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Problem statement

Goal
Detect and isolate objects in image u0

Approach
Evolve contour C s.t. stops on boundary of object
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Active contours with edges

Edge-detector-based snake/active contour model1:

C∗ = arg inf
C

{
J(C)

}

where α, β, λ ∈ R≥0 and C(s) : [0, 1]→ R2

1Kass, Witkin, and Terzopoulos 1988.
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Active contours with edges

Edge-detector-based snake/active contour model1:

C∗ = arg inf
C

α

∫ 1

0

∥∥C′(s)∥∥22 ds+ β

∫ 1

0

∥∥C′′(s)∥∥22 ds︸ ︷︷ ︸
internal energy

−λ
∫ 1

0

∥∥∇u0(C(s))∥∥22 ds︸ ︷︷ ︸
external energy
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Active contours with edges

How to solve:
C∗ = arg inf

C
J(C)

where C is a function?

Calculus of variations

→ Euler-Lagrange equation

∂φ

∂t
=‖∇φ‖ F, φ(0, x, y) = φ0(x, y), C = {(x, y) |φ(·, x, y) = 0}

Want stationary solution of the differential equation
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Active contours with edges

How to solve:
C∗ = arg inf

C
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d
dε

∣∣∣∣
ε=0

J(C∗ + εη) = 0

Want stationary solution of the differential equation
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Active contours with edges

Key assumption

Maxima of |∇u0| are edges

Implementation
Evolve C based on internal forces and edge map g(u0)
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Active contours with edges

u0(x, y)

u0(x, y∗)

y∗

Figure 1: Example image
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Active contours with edges

u0(x, y∗)

∣∣∇(Gσ ∗ u0)(x, y∗)∣∣

Figure 2: Gradient-based segmentation with active contours
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1+

∣∣∇(Gσ∗u0)(x,y∗)
∣∣

Figure 2: Gradient-based segmentation with active contours
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Active contours with edges

1
1+

∣∣∇(Gσ∗u0)(x,y∗)
∣∣

Geometric active contour2:

∂φ

∂t
= g(u0) (κ+ ν)

where

κ = ∇ ·
(
∇φ
‖∇φ‖

)
, ν ∈ R≥0

2Caselles et al. 1993.
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Active contours with edges

φ

u0
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Active contours with edges

φ

u0
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Active contours without edges



Motivation

(Gσ ∗ u0)(x, y∗)

1
1+

∣∣∇(Gσ∗u0)(x,y∗)
∣∣

Figure 3: Gradient-based segmentation with active contours
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Approach

Chan and Vese3 propose:

Core concept
Evolve C s.t. two constants—associated with int(C) and
ext(C)—best approximate u0

3Chan and Vese 2001.
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Active contours without edges

Energy functional F(c1, c2, C):

F(c1, c2, C) =µ · Length(C)
ν ·Area(int(C))

+ λ1

∫
int(C)

∣∣u0(x, y)− c1∣∣2 dx dy
+ λ2

∫
ext(C)

∣∣u0(x, y)− c2∣∣2 dx dy
where µ, ν ≥ 0 and λ1, λ2 > 0
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Active contours without edges

Goal
Find C∗ such that:

c∗1 , c∗2 , C∗ = arg inf
c1,c2,C

F(c1, c2, C)

Remark
Mumford-Shah4 provide proof of minimizer existence

4Mumford and Shah 1989.
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Active contours without edges

Solve the calculus of variations problem

Euler-Lagrange equation for φ:

∂φ

∂t
= δε(φ)

[
µκ− ν − λ1(u0 − c1)2 + λ2(u0 − c2)2

]
= 0

and
φ(0, x, y) = φ0(x, y)

δε(φ)

‖λφ‖
∂φ

∂~n
= 0 on ∂Ω.
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Active contours without edges

Algorithm Active contour without edges
procedure Chan-Vese(u0, φ0)

φ0 ← φ0

n← 1
while solution not stationary do

c1 ← average(int(C))
c2 ← average(ext(C))
φn+1 ← solve Euler-Lagrange equation for φ
Reinitialize φ for signed distance function (optional)
n← n+ 1

return sign(φfinal) on u0
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Demonstration



Demo
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http://localhost:8888/lab
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