Active contours for image segmentation

Jacob Reinhold April 29, 2019

Johns Hopkins University

- 1. Problem statement
- 2. Active contours with edges
- 3. Active contours without edges
- 4. Demonstration

Problem statement

Goal

Detect and isolate objects in image u_0

Goal

Detect and isolate objects in image u_0

Approach

Evolve contour C s.t. stops on boundary of object

$$C^* = \arg\inf_{C} \left\{ J(C) \right\}$$

¹Kass, Witkin, and Terzopoulos 1988.

$$C^* = \underset{C}{\operatorname{arg inf}} \left\{ \underbrace{\alpha \int_0^1 \|C'(s)\|_2^2 \, \mathrm{d}s + \beta \int_0^1 \|C''(s)\|_2^2 \, \mathrm{d}s}_{\text{smoothness of contour}} \right.$$

¹Kass, Witkin, and Terzopoulos 1988.

$$C^* = \underset{C}{\operatorname{arginf}} \left\{ \underbrace{\alpha \int_0^1 \|C'(s)\|_2^2 \, \mathrm{d}s + \beta \int_0^1 \|C''(s)\|_2^2 \, \mathrm{d}s}_{\operatorname{smoothness of contour}} - \lambda \underbrace{\int_0^1 \|\nabla u_0(C(s))\|_2^2 \, \mathrm{d}s}_{\operatorname{object attractor}} \right\}$$

¹Kass, Witkin, and Terzopoulos 1988.

$$C^* = \underset{C}{\operatorname{arg inf}} \left\{ \underbrace{\alpha \int_0^1 \|C'(s)\|_2^2 \, \mathrm{d}s + \beta \int_0^1 \|C''(s)\|_2^2 \, \mathrm{d}s}_{\operatorname{smoothness of contour}} - \lambda \underbrace{\int_0^1 \|\nabla u_0(C(s))\|_2^2 \, \mathrm{d}s}_{\operatorname{object attractor}} \right\}$$

¹Kass, Witkin, and Terzopoulos 1988.

$$C^* = \underset{C}{\operatorname{arg inf}} \left\{ \underbrace{\alpha \int_0^1 \|C'(s)\|_2^2 \, \mathrm{d}s + \beta \int_0^1 \|C''(s)\|_2^2 \, \mathrm{d}s}_{\text{internal energy}} - \lambda \underbrace{\int_0^1 \|\nabla u_0(C(s))\|_2^2 \, \mathrm{d}s}_{\text{external energy}} \right\}$$

¹Kass, Witkin, and Terzopoulos 1988.

$$C^* = \underset{C}{\operatorname{arg\,inf}} J(C)$$

where C is a function?

$$C^* = \underset{C}{\operatorname{arg\,inf}} J(C)$$

where C is a function?

Calculus of variations

$$C^* = \underset{C}{\operatorname{arg\,inf}} J(C)$$

where C is a function?

Calculus of variations

$$\left.\frac{d}{d\epsilon}\right|_{\epsilon=0}J(C^*+\epsilon\eta)=0$$

$$C^* = \underset{C}{\operatorname{arg\,inf}} J(C)$$

where C is a function?

Calculus of variations \rightarrow Euler-Lagrange equation

$$\frac{\partial \phi}{\partial t} = \|\nabla \phi\| F, \quad \phi(0, x, y) = \phi_0(x, y), \quad C = \{(x, y) \mid \phi(\cdot, x, y) = 0\}$$

$$C^* = \underset{C}{\operatorname{arg\,inf}} J(C)$$

where C is a function?

Calculus of variations \rightarrow Euler-Lagrange equation

$$\frac{\partial \phi}{\partial t} = \|\nabla \phi\| F, \quad \phi(0, x, y) = \phi_0(x, y), \quad C = \{(x, y) \mid \phi(\cdot, x, y) = 0\}$$

Want stationary solution of the differential equation

Key assumption

Key assumption Maxima of $|\nabla u_0|$ are edges

Key assumption Maxima of $|\nabla u_0|$ are edges

Implementation

Evolve C based on internal forces and edge map $g(u_0)$

 $u_0(x,y)$

Figure 1: Example image

 $u_0(x,y)$

Figure 1: Example image

Figure 1: Example image

$$\frac{1}{1+|\nabla(G_{\sigma}*u_0)(x,y^*)|}$$

²Caselles et al. 1993.

²Caselles et al. 1993.

 $g(u_0)$

Geometric active contour²:

$$\frac{\partial \phi}{\partial t} = g(u_0) \left(\kappa + \nu \right)$$

where

$$\kappa = \nabla \cdot \left(\frac{\nabla \phi}{\|\nabla \phi\|} \right), \ \nu \in \mathbb{R}_{\geq 0}$$

²Caselles et al. 1993.

g(u_0)

Geometric active contour²:

$$\frac{\partial \phi}{\partial t} = g(u_0) \left(\kappa + \nu \right)$$

where

$$\kappa = \nabla \cdot \left(\frac{\nabla \phi}{\|\nabla \phi\|} \right), \ \nu \in \mathbb{R}_{\geq 0}$$

²Caselles et al. 1993.

Motivation

$(G_{\sigma} * u_0)(x, y^*)$

Motivation

Motivation

Figure 3: Gradient-based segmentation with active contours

Chan and Vese³ propose:

Core concept Evolve *C* s.t. two constants—associated with int(C) and ext(C)—best approximate u_0

³Chan and Vese 2001.

Energy functional $F(c_1, c_2, C)$:

$$F(c_1, c_2, C) = \mu \cdot \text{Length}(C)$$

$$\nu \cdot \text{Area}(\text{int}(C))$$

$$+ \lambda_1 \int_{\text{int}(C)} |u_0(x, y) - c_1|^2 \, dx \, dy$$

$$+ \lambda_2 \int_{\text{ext}(C)} |u_0(x, y) - c_2|^2 \, dx \, dy$$

where $\mu, \nu \geq 0$ and $\lambda_1, \lambda_2 > 0$

Goal

Find C* such that:

$$C_1^*, C_2^*, C^* = \underset{c_1, c_2, C}{\operatorname{arg inf}} F(c_1, c_2, C)$$

⁴Mumford and Shah 1989.

Goal

Find C* such that:

$$C_1^*, C_2^*, C^* = \underset{c_1, c_2, C}{\operatorname{arg inf}} F(c_1, c_2, C)$$

Remark

Mumford-Shah⁴ provide proof of minimizer existence

⁴Mumford and Shah 1989.

Solve the calculus of variations problem

Solve the calculus of variations problem

Euler-Lagrange equation for ϕ :

$$\frac{\partial \phi}{\partial t} = \delta_{\varepsilon}(\phi) \left[\mu \kappa - \nu - \lambda_1 (u_0 - c_1)^2 + \lambda_2 (u_0 - c_2)^2 \right] = 0$$

and
$$\phi(0, x, y) = \phi_0(x, y) \qquad \frac{\delta_{\varepsilon}(\phi)}{\|u_1 + v\|} \frac{\partial \phi}{\partial \overline{z}} = 0 \text{ on } \partial \Omega.$$

 $\|\lambda\phi\| \partial \vec{n}$

procedure Chan-Vese(u_0, ϕ_0)

 $\phi^0 \leftarrow \phi_0$

procedure Chan-Vese(u_0, ϕ_0)

$$\phi^0 \leftarrow \phi_0$$

 $n \leftarrow 1$

procedure CHAN-VESE (u_0, ϕ_0)

$$\phi^0 \leftarrow \phi_0$$

 $n \leftarrow 1$
while solution not stationary do

procedure CHAN-VESE (u_0, ϕ_0)

$$\phi^0 \leftarrow \phi_0$$

 $n \leftarrow 1$

while solution not stationary do

 $C_1 \leftarrow \operatorname{average}(\operatorname{int}(C))$ $C_2 \leftarrow \operatorname{average}(\operatorname{ext}(C))$

procedure CHAN-VESE (u_0, ϕ_0)

$$\phi^0 \leftarrow \phi_0$$

 $n \leftarrow 1$

while solution not stationary do

 $c_1 \leftarrow \text{average}(\text{int}(C))$ $c_2 \leftarrow \text{average}(\text{ext}(C))$ $\phi^{n+1} \leftarrow \text{solve Euler-Lagrange equation for } \phi$

procedure CHAN-VESE (u_0, ϕ_0)

$$\phi^0 \leftarrow \phi_0$$

 $n \leftarrow 1$

while solution not stationary do

 $c_1 \gets \operatorname{average}(\mathsf{int}(C))$

 $C_2 \leftarrow \operatorname{average}(\operatorname{ext}(C))$

 $\phi^{n+1} \gets \text{solve Euler-Lagrange equation for } \phi$

Reinitialize ϕ for signed distance function (optional)

procedure CHAN-VESE (u_0, ϕ_0)

$$\phi^0 \leftarrow \phi_0$$

 $n \leftarrow 1$

while solution not stationary do

 $\begin{array}{l} c_1 \leftarrow \operatorname{average}(\operatorname{int}(\mathcal{C})) \\ c_2 \leftarrow \operatorname{average}(\operatorname{ext}(\mathcal{C})) \\ \phi^{n+1} \leftarrow \operatorname{solve} \operatorname{Euler-Lagrange} \operatorname{equation} \operatorname{for} \phi \\ \operatorname{Reinitialize} \phi \text{ for signed distance function (optional)} \\ n \leftarrow n+1 \end{array}$

Demonstration

Demo