Active contours for image segmentation

Jacob Reinhold

April 29, 2019
Johns Hopkins University

Table of contents

1. Problem statement
2. Active contours with edges
3. Active contours without edges
4. Demonstration

Problem statement

Problem statement

Goal
Detect and isolate objects in image u_{0}

Problem statement

Goal
Detect and isolate objects in image u_{0}

Approach
Evolve contour C s.t. stops on boundary of object

Active contours with edges

Active contours with edges

Edge-detector-based snake/active contour model ${ }^{1}$:

$$
C^{*}=\underset{C}{\arg \inf }\{J(C)\}
$$

${ }^{1}$ Kass, Witkin, and Terzopoulos 1988.

Active contours with edges

Edge-detector-based snake/active contour model ${ }^{1}$:
$C^{*}=\underset{C}{\arg \inf }\{\underbrace{\alpha \int_{0}^{1}\left\|C^{\prime}(s)\right\|_{2}^{2} \mathrm{~d} s+\beta \int_{0}^{1}\left\|C^{\prime \prime}(s)\right\|_{2}^{2} \mathrm{~d} s}_{\text {smoothness of contour }}$
where $\alpha, \beta, \lambda \in \mathbb{R}_{\geq 0}$ and $C(s):[0,1] \rightarrow \mathbb{R}^{2}$
${ }^{1}$ Kass, Witkin, and Terzopoulos 1988.

Active contours with edges

Edge-detector-based snake/active contour model ${ }^{1}$:

$$
C^{*}=\underset{C}{\operatorname{arginf}}\{\underbrace{\alpha \int_{0}^{1}\left\|C^{\prime}(s)\right\|_{2}^{2} \mathrm{~d} s+\beta \int_{0}^{1}\left\|C^{\prime \prime}(s)\right\|_{2}^{2} \mathrm{~d} s}_{\text {smoothness of contour }}-\lambda \underbrace{\int_{0}^{1}\left\|\nabla u_{0}(C(s))\right\|_{2}^{2} \mathrm{~d} s}_{\text {object attractor }}\}
$$

where $\alpha, \beta, \lambda \in \mathbb{R}_{\geq 0}$ and $C(s):[0,1] \rightarrow \mathbb{R}^{2}$

[^0]
Active contours with edges

Edge-detector-based snake/active contour model¹:

$$
C^{*}=\underset{C}{\operatorname{arginf}}\{\underbrace{\alpha \int_{0}^{1}\left\|C^{\prime}(s)\right\|_{2}^{2} \mathrm{~d} s+\beta \int_{0}^{1}\left\|C^{\prime \prime}(s)\right\|_{2}^{2} \mathrm{~d} s}_{\text {smoothness of contour }}-\lambda \underbrace{\int_{0}^{1}\left\|\nabla u_{0}(C(s))\right\|_{2}^{2} \mathrm{~d} s}_{\text {object attractor }}\}
$$

where $\alpha, \beta, \lambda \in \mathbb{R}_{\geq 0}$ and $C(s):[0,1] \rightarrow \mathbb{R}^{2}$

[^1]
Active contours with edges

Edge-detector-based snake/active contour model ${ }^{1}$:
$C^{*}=\underset{C}{\arg \inf }\{\underbrace{\alpha \int_{0}^{1}\left\|C^{\prime}(s)\right\|_{2}^{2} d s+\beta \int_{0}^{1}\left\|C^{\prime \prime}(s)\right\|_{2}^{2} d s}_{\text {internal energy }}-\lambda \underbrace{\int_{0}^{1}\left\|\nabla u_{0}(C(s))\right\|_{2}^{2} d s}_{\text {external energy }}\}$
where $\alpha, \beta, \lambda \in \mathbb{R}_{\geq 0}$ and $C(s):[0,1] \rightarrow \mathbb{R}^{2}$
${ }^{1}$ Kass, Witkin, and Terzopoulos 1988.

Active contours with edges

How to solve:

$$
C^{*}=\underset{C}{\arg \inf J(C)}
$$

where C is a function?

Active contours with edges

How to solve:

$$
C^{*}=\underset{C}{\arg \inf J(C)}
$$

where C is a function?

Calculus of variations

Active contours with edges

How to solve:

$$
C^{*}=\underset{C}{\arg \inf J(C)}
$$

where C is a function?

Calculus of variations

$$
\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} J\left(C^{*}+\epsilon \eta\right)=0
$$

Active contours with edges

How to solve:

$$
C^{*}=\underset{C}{\arg \inf J(C)}
$$

where C is a function?

Calculus of variations \rightarrow Euler-Lagrange equation

$$
\frac{\partial \phi}{\partial t}=\|\nabla \phi\| F, \quad \phi(0, x, y)=\phi_{0}(x, y), \quad C=\{(x, y) \mid \phi(\cdot, x, y)=0\}
$$

Active contours with edges

How to solve:

$$
C^{*}=\operatorname{arginf} J(C)
$$

where C is a function?

Calculus of variations \rightarrow Euler-Lagrange equation
$\frac{\partial \phi}{\partial t}=\|\nabla \phi\| F, \quad \phi(0, x, y)=\phi_{0}(x, y), \quad C=\{(x, y) \mid \phi(\cdot, x, y)=0\}$
Want stationary solution of the differential equation

Active contours with edges

Key assumption

Active contours with edges

Key assumption
Maxima of $\left|\nabla u_{0}\right|$ are edges

Active contours with edges

Key assumption
Maxima of $\left|\nabla u_{0}\right|$ are edges

Implementation
Evolve C based on internal forces and edge map $g\left(u_{0}\right)$

Active contours with edges

$$
u_{0}(x, y)
$$

Figure 1: Example image

Active contours with edges

$$
u_{0}(x, y)
$$

Figure 1: Example image

Active contours with edges

$$
u_{0}(x, y)
$$

$$
u_{0}\left(x, y^{*}\right)
$$

Figure 1: Example image

Active contours with edges

$$
u_{0}\left(x, y^{*}\right)
$$

Figure 2: Gradient-based segmentation with active contours

Active contours with edges

$$
\left(G_{\sigma} * u_{0}\right)\left(x, y^{*}\right)
$$

Figure 2: Gradient-based segmentation with active contours

Active contours with edges

$$
\left(G_{\sigma} * u_{0}\right)\left(x, y^{*}\right)
$$

$$
\left|\nabla\left(G_{\sigma} * u_{0}\right)\left(x, y^{*}\right)\right|
$$

Figure 2: Gradient-based segmentation with active contours

Active contours with edges

$$
\left(G_{\sigma} * u_{0}\right)\left(x, y^{*}\right)
$$

$$
\frac{1}{1+\nabla \nabla\left(G_{\sigma} * u_{0}\right)\left(x, v^{*}\right) \mid}
$$

Figure 2: Gradient-based segmentation with active contours

Active contours with edges

$$
\frac{1}{1+\left|\nabla\left(G_{\sigma} * u_{0}\right)\left(x, y^{*}\right)\right|}
$$

[^2]
Active contours with edges

$$
g\left(u_{0}\right)
$$

[^3]
Active contours with edges

Geometric active contour²:

$$
\frac{\partial \phi}{\partial t}=g\left(u_{0}\right)(\kappa+\nu)
$$

where

$$
\kappa=\nabla \cdot\left(\frac{\nabla \phi}{\|\nabla \phi\|}\right), \nu \in \mathbb{R}_{\geq 0}
$$

[^4]
Active contours with edges

Geometric active contour²:

$$
\frac{\partial \phi}{\partial t}=g\left(u_{0}\right)(\kappa+\nu)
$$

where

$$
\kappa=\nabla \cdot\left(\frac{\nabla \phi}{\|\nabla \phi\|}\right), \nu \in \mathbb{R} \geq 0
$$

[^5]
Active contours with edges

Active contours with edges

Active contours without edges

Motivation

$$
\left(G_{\sigma} * u_{0}\right)\left(x, y^{*}\right)
$$

Figure 3: Gradient-based segmentation with active contours

Motivation

$$
\left(G_{\sigma} * u_{0}\right)\left(x, y^{*}\right)
$$

$$
\frac{1}{1+\nabla \nabla\left(G_{\sigma} * u_{0}\right)\left(x, v^{*}\right) \mid}
$$

Figure 3: Gradient-based segmentation with active contours

Motivation

$$
\left(G_{\sigma} * u_{0}\right)\left(x, y^{*}\right)
$$

$$
\frac{1}{1+\nabla \nabla\left(G_{\sigma} * u_{0}\right)\left(x, v^{*}\right) \mid}
$$

Figure 3: Gradient-based segmentation with active contours

Approach

Chan and Vese ${ }^{3}$ propose:

Core concept

Evolve C s.t. two constants-associated with $\operatorname{int}(C)$ and $\operatorname{ext}(C)$-best approximate u_{0}

[^6]
Active contours without edges

Energy functional $F\left(c_{1}, c_{2}, C\right)$:

$$
\begin{aligned}
F\left(c_{1}, c_{2}, C\right)= & \mu \cdot \operatorname{Length}(C) \\
& \nu \cdot \operatorname{Area}(\operatorname{int}(C)) \\
& +\lambda_{1} \int_{\operatorname{intt}(C)}\left|u_{0}(x, y)-c_{1}\right|^{2} d x d y \\
& +\lambda_{2} \int_{\operatorname{ext}(C)}\left|u_{0}(x, y)-c_{2}\right|^{2} d x d y
\end{aligned}
$$

where $\mu, \nu \geq 0$ and $\lambda_{1}, \lambda_{2}>0$

Active contours without edges

Goal
Find C^{*} such that:

$$
c_{1}^{*}, c_{2}^{*}, C^{*}=\underset{c_{1}, c_{2}, C}{\arg \inf } F\left(c_{1}, c_{2}, C\right)
$$

[^7]
Active contours without edges

Goal
Find C^{*} such that:

$$
c_{1}^{*}, c_{2}^{*}, C^{*}=\underset{c_{1}, c_{2}, c}{\arg \inf } F\left(c_{1}, c_{2}, C\right)
$$

Remark

Mumford-Shah ${ }^{4}$ provide proof of minimizer existence

[^8]
Active contours without edges

Solve the calculus of variations problem

Active contours without edges

Solve the calculus of variations problem

Euler-Lagrange equation for ϕ :

$$
\frac{\partial \phi}{\partial t}=\delta_{\varepsilon}(\phi)\left[\mu \kappa-\nu-\lambda_{1}\left(u_{0}-c_{1}\right)^{2}+\lambda_{2}\left(u_{0}-c_{2}\right)^{2}\right]=0
$$

and

$$
\phi(0, x, y)=\phi_{0}(x, y) \quad \frac{\delta_{\varepsilon}(\phi)}{\|\lambda \phi\|} \frac{\partial \phi}{\partial \vec{n}}=0 \text { on } \partial \Omega .
$$

Active contours without edges

Algorithm Active contour without edges
procedure Chan-VESE $\left(u_{0}, \phi_{0}\right)$
$\phi^{0} \leftarrow \phi_{0}$

Active contours without edges

Algorithm Active contour without edges
procedure Chan-VESE $\left(u_{0}, \phi_{0}\right)$

$$
\begin{aligned}
& \phi^{0} \leftarrow \phi_{0} \\
& n \leftarrow 1
\end{aligned}
$$

Active contours without edges

Algorithm Active contour without edges
procedure Chan-VESE $\left(u_{0}, \phi_{0}\right)$
$\phi^{0} \leftarrow \phi_{0}$
$n \leftarrow 1$
while solution not stationary do

Active contours without edges

Algorithm Active contour without edges
procedure Chan-VESE $\left(u_{0}, \phi_{0}\right)$

$$
\begin{aligned}
& \phi^{0} \leftarrow \phi_{0} \\
& n \leftarrow 1
\end{aligned}
$$

while solution not stationary do
$c_{1} \leftarrow \operatorname{average}(\operatorname{int}(C))$
$c_{2} \leftarrow \operatorname{average}(\operatorname{ext}(C))$

Active contours without edges

Algorithm Active contour without edges
procedure Chan-VESE $\left(u_{0}, \phi_{0}\right)$

$$
\begin{aligned}
& \phi^{0} \leftarrow \phi_{0} \\
& n \leftarrow 1
\end{aligned}
$$

while solution not stationary do
$c_{1} \leftarrow \operatorname{average}(\operatorname{int}(C))$
$c_{2} \leftarrow \operatorname{average}(\operatorname{ext}(C))$
$\phi^{n+1} \leftarrow$ solve Euler-Lagrange equation for ϕ

Active contours without edges

Algorithm Active contour without edges
procedure Chan-VESE $\left(u_{0}, \phi_{0}\right)$

$$
\begin{aligned}
& \phi^{0} \leftarrow \phi_{0} \\
& n \leftarrow 1
\end{aligned}
$$

while solution not stationary do
$c_{1} \leftarrow \operatorname{average}(\operatorname{int}(C))$
$c_{2} \leftarrow \operatorname{average}(\operatorname{ext}(C))$
$\phi^{n+1} \leftarrow$ solve Euler-Lagrange equation for ϕ
Reinitialize ϕ for signed distance function (optional)

Active contours without edges

Algorithm Active contour without edges
procedure Chan-VESE $\left(u_{0}, \phi_{0}\right)$

$$
\begin{aligned}
& \phi^{0} \leftarrow \phi_{0} \\
& n \leftarrow 1
\end{aligned}
$$

while solution not stationary do
$c_{1} \leftarrow \operatorname{average}(\operatorname{int}(C))$
$c_{2} \leftarrow \operatorname{average}(\operatorname{ext}(C))$
$\phi^{n+1} \leftarrow$ solve Euler-Lagrange equation for ϕ
Reinitialize ϕ for signed distance function (optional)
$n \leftarrow n+1$

Active contours without edges

Algorithm Active contour without edges
procedure Chan-VESE $\left(u_{0}, \phi_{0}\right)$
$\phi^{0} \leftarrow \phi_{0}$
$n \leftarrow 1$
while solution not stationary do
$C_{1} \leftarrow \operatorname{average}(\operatorname{int}(C))$
$C_{2} \leftarrow \operatorname{average}(\operatorname{ext}(C))$
$\phi^{n+1} \leftarrow$ solve Euler-Lagrange equation for ϕ
Reinitialize ϕ for signed distance function (optional)
$n \leftarrow n+1$
return $\operatorname{sign}\left(\phi^{\text {final }}\right)$ on u_{0}

Demonstration

Demo

[^0]: ${ }^{1}$ Kass, Witkin, and Terzopoulos 1988.

[^1]: ${ }^{1}$ Kass, Witkin, and Terzopoulos 1988.

[^2]: ${ }^{2}$ Caselles et al. 1993.

[^3]: ${ }^{2}$ Caselles et al. 1993.

[^4]: ${ }^{2}$ Caselles et al. 1993.

[^5]: ${ }^{2}$ Caselles et al. 1993.

[^6]: ${ }^{3}$ Chan and Vese 2001.

[^7]: ${ }^{4}$ Mumford and Shah 1989.

[^8]: ${ }^{4}$ Mumford and Shah 1989.

