
Array Processing

Jacob Reinhold
jreinhold@gmail.com

Abstract
Array processing is concerned with extracting information
from signals via an array of sensors. The most promi-
nent problem in the field is to determine the location of an
energy-radiating source relative to the location of the array,
i.e., the estimation of the direction-of-arrival of a signal in
the presence of noise and interfering signals. In this paper,
we review the concepts necessary to study array process-
ing and give an overview of the subject.
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2 PROBABILITY

1 Introduction

The motivation to create this document was to create a streamlined document that gave the basics
necessary to work in the domain of array processing. Further, having a searchable reference is
often useful to recall obscure definitions and which makes understanding papers easier when
starting out.

We assume that the reader is familiar with linear algebra and undergraduate probability/statistics;
the first section and appendices have some information on the subjects. To learn array process-
ing, we must first review probability and stochastic processes, as well as ways to analyze those
processes. The probability and stochastic processes section requires some knowledge of real
analysis. If you are familiar with probability and stochastic processes in an engineering or physics
capacity, then you might just skip the section. Next, we build the filtering systems that will be used
in array processing, just without the arrays. Following that, we talk about spectrum estimation,
which is at the heart of most array processing applications. Finally, we use all of the previous
information in the array processing domain.

These notes are generally structured around the textbook: “Statistical and Adaptive Signal Pro-
cessing” by Manolakis, et al. [1] and “Practical Array Processing” by Sullivan [2]. Some additional
information comes from “Discrete Random Signals and Statistical Signal Processing” by Therrien
[3]. Much of the probability section is lifted from course notes from a measure-theoretic probability
course taught by Žitković at the University of Texas at Austin in Fall 2016 [4]. Some other sources
are used, but to a lesser extent and are additionally listed in the references.

2 Probability

This will be a very high-level overview of some of the core concepts that will be used throughout
these notes. If any of the terms are used without definition, then you can probably skip over them
since they aren’t very important to the concept (they are only included for correctness and rigour).
This section is sort of a hodgepodge of measure-theory and practical engineering probability, so
your mileage may vary.

Let’s get some notation out of the way:

• Let L0 be the set of all (Lebesgue) measurable functions. Note that this is a vector space.

• Let Lp be the set of all measurable functions on a measure space, e.g., (S,S , µ), satisfying
the following condition: ∫

| f |p dµ < ∞.

Let’s begin this section with a rigorous mathematical definition of a probabilistic model. Let Ω
represent the sample space, F be a family of events (a σ-algebra on Ω), and P be a probability
measure (a set function mapping F → [0, ∞]) on F . A probability space is defined as the triple
(Ω,F , P). Note that we do not generally work with the sample space Ω since it is often too large
for analysis. Instead, we focus on studying mappings from Ω to the real numbers, i.e., a random
variable.
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2 PROBABILITY 2.1 Definitions

The distribution of a random variable, say X : Ω→ S for some measurable space (S,S), is defined
to be the measure µX on S ; µX(A) = P[X ∈ A] = P[X−1(A)] for A ∈ S .

It is generally easier to work with the (cumulative) distribution function (cdf) of a random variable
X, which is defined as:

FX(x) := P[X ≤ x] = P[X−1((−∞, x])].

If X is a random variable such that the distribution µX is absolutely continuous to the Lebesgue
measure λ on the Borel set B(R)1, then the probability density function (pdf) fX is defined to be
the (Radon-Nikodym) derivative dµX

dλ . You can forget all that mumbo-jumbo and think of the pdf as
the derivative of the cdf2.

As an aside, here is some more intuition about Ω taken from here:

One should think of the sample space Ω as a source of all randomness in the system: the
elementary event ω ∈ Ω is chosen by a process beyond our control and the exact value of
ω is assumed to be unknown. All the other parts of the system are possibly complicated,
but deterministic, functions of ω (random variables).

2.1 Definitions

I’m just going to list a bunch of definitions here to speed up the process.

Definition 2.1. The Lebesgue integral with respect to the probability measure P is called expec-
tation and is denoted by E, defined as

E[X] :=
∫

XdP =
∫

Ω
X(ω)P[dω].

If X has a pdf f , then E[X] =
∫ ∞
−∞ x f (x) dx. Note that the expectation operator is linear (among

other properties).

Definition 2.2. The variance of the random variable X is defined as

Var[X] ≡ σ2
X := E[(X−E[X])2] = E[X2]− (E[X])2.

The variance describes the spread of the distribution.

Definition 2.3. The skewness of a random variable X is defined as

Skew[X] := E

[(
X−E[X]

σX

)3
]

This value describes how the distribution leans (positive is to the right of the mean, negative is to
the left of the mean).

1the σ-algebra generated by the open sets of R
2the Radon-Nikodym derivative being a function that integrates nicely
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2 PROBABILITY 2.2 Random Vectors

Definition 2.4. The kurtosis of a random variable X is defined as

Kurt[X] := E

[(
X−E[X]

σX

)4
]

Kurtosis describes how a distribution looks insofar as flatness or pointedness (negative for flat,
and positive for pointed).

Definition 2.5. The characteristic function of a random variable X is the function ϕX : R → C

given by
ϕX(t) := E[eitX].

If X admits a density, then ϕX(t) =
∫ ∞
−∞ eitx fX(x) dx.1

Remark. Let X and Y be independent random variables, and let Z = X + Y. Then µZ = µX ∗ µY
where ∗ is convolution. It follows that FZ(z) =

∫
R

FX(z − y)dFY(y) (Riemann-Stieltjes integral—
don’t worry about it, if you are curious look here). A more useful, and easily remembered, formu-
lation is fZ(z) = ( fX ∗ fY)(z).

The characteristic function transforms this convolution into multiplication, i.e., ϕZ = ϕX · ϕY.

Definition 2.6. The covariance of two random variables X and Y (on the same sample space) is
defined by

Cov(X, Y) = E[(X−E[X])(Y−E[Y])∗]
= E[XY∗]−E[X]E[Y]∗.

Definition 2.7. The correlation of two random variables X and Y (on the same sample space) is
defined by

Cor(X, Y) = E[XY∗] = Cov(X, Y) + E[X]E[Y]∗ (= 〈X, Y〉).
If Cor(X, Y) = 0, then X and Y are said to be orthogonal.

2.2 Random Vectors

A real-valued vector containing n random variables is called a random vector and is denoted by

X = [X1, X2, . . . , Xn].

Clearly, X ∈ Rn.

The joint distribution describes the relationship between elements of a random vector (or more
generally any two or more random variables). The measure µX on B(Rn) given by

µX(B) = P[X ∈ B]

is the distribution of the random vector X. The marginal distribution is the distribution of one
variable in the vector, i.e.,

µX1(A) = P[X1 ∈ A] = P[X1 ∈ A, X2 ∈ R, . . . , Xn ∈ R]

= µX(A×R× · · · ×R).

1essentially this is the Fourier transform
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2 PROBABILITY 2.3 Independence

The joint cdf is denoted as FX(x) and the joint pdf is denoted as fX(x). The marginal density
function is defined as

fxi(x) =
∫
· · ·

∫
(n−1)

fX(x) dx1 · · · dxi−1 dxi+1 · · · dxn.

Note that FX(x) =
∫ x
−∞ fX(t) dt and fX(x) = ∂

∂X1
· · · ∂

∂Xn
FX(x).

2.3 Independence

Note that the σ-algebra generated by a random variable, say X : Ω→ Rn, is defined to be

σ(X) := {X−1(B) | B ∈ B(Rn)},

and it is the smallest σ-algebra such that X is measurable1.

Let (X, ·, µ) be a measure space. Then any two σ-algebras A,B on that measure space are said
to be independent if for any A ∈ A and B ∈ B, we have

µ(A ∩ B) = µ(A)µ(B).

Definition 2.8. Random variables X1, . . . , Xn are said to be independent if the σ-algebras σ(X1), . . . , σ(Xn)
are independent.

2.4 Correlation and Covariance Matrices

Let X, Y be random vectors of length M, N, respectively.

Definition 2.9. The autocorrelation matrix is defined by

RX := E[X XH ] =

 r11 · · · r1M
...

. . .
...

rM1 · · · rMM

 .

Note that rii = E[|Xi|2] are the second-order moments and rij = E[XiX∗j ] = r∗ji measures the
correlation.

Definition 2.10. The autocovariance matrix is defined by

ΓX := E
[
(X− µX)(X− µX)

H
]
=

 γ11 · · · γ1M
...

. . .
...

γM1 · · · γMM

 .

Note that γii = σ2
Xi

and γij measures the covariance between Xi and Xj.

1X is (F ,B(Rn))-measurable if X−1(B) ∈ F for each B ∈ B(Rn).
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2 PROBABILITY 2.5 Law of Large Numbers and Central Limit Theorem

Definition 2.11. The correlation coefficient between Xi and Xj is defined to be

ρij :=
γij

σiσj
.

This quantity measures the statistical similarity between two random variables.

Definition 2.12. The cross-correlation matrix is defined by

RXY := E[X YH ] =

 E[X1Y∗1 ] · · · E[X1Y∗N ]
...

. . .
...

E[XMY∗1 ] · · · E[XMY∗N ]

 .

The cross-covariance matrix, ΓXY := RXY − µXµY
H. These quantities can be interpreted similarly

to the corresponding auto- matrices.

2.5 Law of Large Numbers and Central Limit Theorem

Theorem 2.1 (Weak law of large numbers). Let {Xn}n∈N be an iid1 sequence of random variables
with the (common) distribution µ and the characteristic function ϕ = ϕµ such that ϕ′(0) exists.
Then c = −iϕ′(0) is a real number2 and

1
n

n

∑
k=1

Xk → c in probability.

Theorem 2.2 (Central Limit Theorem3). Let {Xn}n∈N be an iid sequence of random variables with
0 < Var[X1] < ∞. Then

∑n
k=1(Xk − µ)√

σ2n
D→ χ,

where χ ∼ N(0, 1), µ = E[X1] and σ2 = Var[X1].

2.6 Some Other Definitions that Don’t Quite Fit Anywhere Else

Definition 2.13. This definition comes from here. Let X1 and X2 be independent copies of a
random variable X. Then X is said to be stable if for any constants a > 0 and b > 0 the random
variable aX1 + bX2 has the same distribution as cX + d for some constants c > 0 and d. The
distribution is said to be strictly stable if this holds with d = 0.

Definition 2.14. ‖ f ‖Lp =
(∫
| f |p dµ

) 1
p .

Definition 2.15 (Conjugate exponents). We say that p, q ∈ [1, ∞] are conjugate exponents if
1
p +

1
q = 1

1independent and identically distributed
2E[Xk] = (−i)k ϕ(k)(0)
3note that the random variables do not necessarily have to be identically distributed for the sequence to converge in

distribution to normal; see the Lindeberg-Feller theorem
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2 PROBABILITY 2.7 Conditional Expectation (and Probability)

Proposition 2.1 (Hölder’s inequality). Let p, q ∈ [1, ∞] be conjugate exponents. For f ∈ Lp and
g ∈ Lq, we have ∫

| f g| dµ ≤ ‖ f ‖Lp ‖g‖Lq .

The equality holds if and only if there exist constants α, β ≥ 0 with α + β > 0 such that α| f |p =
β|g|q.

Corollary 2.2.1 (Cauchy-Schwarz inequality). For f , g ∈ L2, we have∫
| f g| dµ ≤ ‖ f ‖L2 ‖g‖L2 .

Corollary 2.2.2 (Minkowski’s inequality). For f , g ∈ Lp, p ∈ [1, ∞], we have

‖ f + g‖Lp ≤ ‖ f ‖Lp + ‖g‖Lp .

Definition 2.16. A subset K of a vector space is said to be convex if αx + (1− α)y ∈ K, whenever
x, y ∈ K and α ∈ [0, 1].

I’m putting stars around Jensen’s (informal defintion) since it shows up everywhere.

Proposition 2.2 (Jensen’s inequality (formal)). Suppose that µ(S) = 1 (i.e., µ is a probability
measure) and that ϕ : R → R is a convex function. For a function f ∈ L1 we have ϕ( f ) ∈ { f ∈
L0 | f− ∈ L1} and ∫

ϕ( f ) dµ ≥ ϕ

(∫
f dµ

)
.

Proposition 2.3 (F Jensen’s inequality F). If ϕ is convex, then

E[ϕ(X)] ≥ ϕ(E[X]).

2.7 Conditional Expectation (and Probability)

Definition 2.17. The indicator function is defined as:

1A(x) =

{
1 x ∈ A,
0 x 6∈ A.

Definition 2.18 (Conditional Probability). For events A, B and P[B] > 0, recall the conditional
probability of A given B is defined to be

P[A|B] = P[A ∩ B]
P[B]

.

Definition 2.19. Let G be a sub-σ-algebra of F , and let X ∈ L1 be a random variable. Then
the random variable ξ is the conditional expectation of X with respect to G—and denote it by
E[X|G]—if

1. ξ ∈ L1,

2. ξ is G-measurable,

3. E[ξ1A] = E[X1A] for all A ∈ G.
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3 STOCHASTIC PROCESSES

Note that conditional expectation is linear.

Definition 2.20. Let G be a sub-σ-algebra of F . The conditional probability of A ∈ F , given
G—denoted by P[A|G]—is defined by

P[A|G] = E[1A|G].

Remark. When the random vector (X, Y) admits a joint density fX,Y(x, y), and fY(y) > 0, then the
conditional density is defined as

fX|Y=y(x) :=
fX,Y(x, y)

fY(y)
.

Then P[X ∈ A|Y = y] :=
∫

A fX|Y=y(x, y) dx.

Remark. With the introduction of conditional expectation, we can start to think of σ-algebras as
representing information, i.e., the ability to answer questions. In probability, what we are interested
in are the values of ω ∈ Ω which actually cause an event. However, as stated before, Ω is too
large for this kind of analysis. Thus we are interested in determining if the “true” ω is in some
event, say A. Fix G ⊆ F .

1. ω ∈ Ω so Ω ∈ G.

2. If the true ω ∈ A, then ω 6∈ Ac and vice versa. So for A ∈ G we have Ac ∈ G

3. Let {An}n∈N be a sequence of events of which we know the answer to the question: “Is
ω ∈ An?” Then we know how to answer the question to the union of all such events. Thus⋃

n∈N An ∈ G.

You have to know the definition of a σ-algebra, but—if you do—clearly we have shown that infor-
mation can be represented by a σ-algebra.

3 Stochastic Processes

A stochastic process is a family of random variables {Xt}t∈T . When T = N, then {Xt}t∈T is a
discrete-time stochastic process. When T = [0, ∞), then it is called a continuous-time stochastic
process.

Note that T ⊆ [0, ∞), so a stochastic process is just a generalization of a random vector/variable
(if T = {1}). In these notes, we will only talk about discrete-time stochastic processes so T will
generally always equal N or equivalently N0 = N∪ {0}.

3.1 Second Moment Statistical Description

I need to define these here, but I will talk about what a “second moment” is in the next section.

Definition 3.1. The autocorrelation sequence of a discrete-time random process {Xn}n∈N is de-
fined as the joint moment of the random variables Xn1 and Xn2 , that is,

rXX(n1, n2) = E[Xn1 X∗n2
].
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3 STOCHASTIC PROCESSES 3.2 Stationarity

This value provides a quantification of the dependence between values of the process at two
different times (n1 and n2).

The cross-correlation sequence is defined similarly (change the second X to a Y from another
stochastic process {Yn}n∈N defined on the same sample space).

Definition 3.2. The autocovariance sequence of {Xn}n∈N is defined by

γXX(n1, n2) = E[(Xn1 − µXn1
)(Xn2 − µXn2

)∗]

= rXX(n1, n2)− µXn1
µ∗Xn2

The cross-covariance sequence is defined similarly (change the second X to a Y from another
stochastic process {Yn}n∈N defined on the same sample space).

Definition 3.3. The normalized cross-correlation of two stochastic processes {Xn}n∈N and {Yn}n∈N

is defined by

ρXY(n1, n2) =
γXY(n1, n2)

σX(n1)σY(n2)
.

Definition 3.4.

• A stochastic process is called independent if it is sequence of independent random variables.

• A stochastic process is called uncorrelated if it is a sequence of uncorrelated random vari-
ables.

• A stochastic process is called orthogonal if it is a sequence of orthogonal random variables,
i.e., E[XiX∗j ] = 0 for all i, j ∈N where i 6= j for a stochastic process {Xn}n∈N.

The above three definitions can be generalized to handle two random processes and the pro-
cesses are labeled the same.

3.2 Stationarity

Definition 3.5. A random process {Xn}n∈N is called stationary if statistics determined for Xi are
equal to those for Xj for every j ∈N.

Definition 3.6. A stochastic process {Xn}n∈N is called stationary of order N if

fX(X1, . . . , XN) = fX(X1+k, . . . , XN+k)

for any value k. If {Xn}n∈N is stationary for all order N = 1, 2, . . ., then it is said to be strict-sense
stationary (SSS). An example of a SSS process is an iid sequence.

Definition 3.7. A random signal {Xn}n∈N is called wide-sense stationary (WSS) if

1. E[|Xi|2] < ∞, i.e., {Xn}n∈N ∈ L2.1

2. E[Xi] = µX for all i ∈N.

3. Var[Xi] = σ2
X for all i ∈N.

1the notation here is bad, but I mean each realization of the random process is in L2
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3 STOCHASTIC PROCESSES 3.3 Ergodicity

4. The autocorrelation depends only on the distance l = n1 − n2, i.e.,

rX(n1, n2) = rX(n1 − n2) = rX(l) = E[Xn+lX∗n] = E[XnX∗n−l ]

Remark. Note that SSS and WSS stochastic processes are martingales.

Definition 3.8. Two random signals {Xn}n∈N and {Yn}n∈N are called jointly wide-sense stationary
if each is WSS and their cross-correlation depends only on l = n1 − n2, i.e.,

rXY(l) = E[XnY∗n−l ] = rXY(l)− µXµ∗Y.

Here are some properties of WSS stochastic processes:

1. The average power of a WSS process {Xn}n∈N satisfies1:

rX(0) = σ2
X + |µX|2 ≥ 0 rX(0) ≥ |rX(l)| for all l.

2. The autocorrelation sequence rX(l) is a conjugate symmetric function of lag l, i.e.,

r∗X(−l) = rX(l).

3. The autocorrelation sequence rX(l) is positive semi-definite.

3.2.1 Moments

The first four moments of a stationary random process are

1. µx = E[x(n)]

2. rx(l) = E[x∗(n)x(n + l)]

3. m(3)
x (l1, l2) = E[x∗(n)x(n + l1)x(n + l2)]

4. m(4)
x (l1, l2, l3) = E[x∗(n)x∗(n + l1)x(n + l2)x(n + l3)]

3.3 Ergodicity

Ergodicity implies that all the statistical information can be obtained from any single representative
member of the ensemble, where the ensemble is the set of all realizable time series of a stochastic
process. Thus, so far, when we have referred to the expectation of a stochastic process, we
actually been referring to the ensemble average. However, we would like to obtain statistical
information from one realization instead of the whole ensemble. The only way to do this is through
the time average, defined to be

〈(·)〉 := lim
N→∞

1
2N + 1

N

∑
n=−N

(·) and 〈(·)〉N :=
1

2N + 1

N

∑
n=−N

(·)

1rX(0) is the total average power of {Xn}n∈N
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3 STOCHASTIC PROCESSES 3.4 Martingales

For every ensemble average, we can define a corresponding time average:

Mean value = 〈Xn〉
Mean square =

〈
|Xn|2

〉
Variance =

〈
|Xn − 〈Xn〉 |2

〉
Autocorrelation =

〈
XnX∗n−l

〉
Autocovariance = 〈(Xn − 〈Xn〉)(Xn−l − 〈Xn〉)∗〉

Cross-correlation =
〈

XnY∗n−l
〉

Cross-covariance = 〈(Xn − 〈Xn〉)(Yn−l − 〈Yn〉)∗〉

A random signal {Xn}n∈N is called ergodic if its ensemble averages equal appropriate time aver-
ages. However, there are several degrees of ergodicity.

Definition 3.9. A random process {Xn}n∈N is ergodic in the mean if

〈Xn〉 = E[Xn].

Definition 3.10. A random process {Xn}n∈N is ergodic in correlation if〈
XnX∗n−l

〉
= E[XnX∗n−l ].

Remark. If {Xn}n∈N is ergodic in both mean and correlation, then it is WSS.

Definition 3.11. Two random signals are called jointly ergodic if they are individually ergodic and
in addition 〈

XnY∗n−l
〉
= E[XnY∗n−l ].

3.4 Martingales

The following defintions are not important for these notes, but they are useful in the theory of
probability and have application nearly everywhere. I’ll see if I can work in some applications of
martingales somewhere in the text.

Definition 3.12. A filtration is a sequence {Fn}n∈N0 of sub-σ-algebras of F such that Fn ⊆ Fn+1,
for all n ∈ N0. A probability space with a filtration—(Ω,F , {Fn}n∈N0 , P)—is called a filtered
probability space.

In a sense, a filtration captures the idea that as time moves forward we are only gaining new
information (the σ-algebras get monotonically bigger as n increases). Anyone who has worked on
a software project knows that this is absurd, but let’s accept the defintion for now.

Definition 3.13. A stochastic process {Xn}n∈N0 is said to be adapted with respect to a filtration
{Fn}n∈N0 if Xn is Fn-measurable for each n ∈N0.

Definition 3.14. Let {Fn}n∈N0 be a filtration. A stochastic process {Xn}n∈N0 is called an {Fn}n∈N0-
supermartingale if

1. {Xn}n∈N0 is {F}n∈N0-adapted,

2. Xn ∈ L1, for all n ∈N0, and
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4 ANALYSIS OF STOCHASTIC PROCESSES

3. E[Xn+1|Fn] ≤ Xn, a.s.1, for all n ∈N0.

A process {Xn}n∈N0 is called a submartingale if {−Xn}n∈N0 is a supermartingale. A (discrete-
time) martingale is a process which is both a supermartingale and a submartingale, i.e., the prop-
erty 3 is an equality.

Basically, a martingale is a stochastic process such that tomorrow’s expected value is equal to
the value realized today. To show that a process is a martingale, it suffices to show property
3 (properties 1 and 2 are mostly just technicalities). A random walk (or Wiener process) is an
example of a martingale.

4 Analysis of Stochastic Processes

Now that we have introduced stochastic processes, we can talk about how we actually analyze
them as engineers and scientists.

4.1 Frequency-Domain Description of Stationary Processes

Definition 4.1. The power spectral density (PSD) of a stationary stochastic process {Xn}n∈N is
the Fourier transform of its autocorrelation sequence rX(l).

Definition 4.2. The cross-power spectral density of two zero-mean and jointly stationary stochas-
tic processes provides a description of their statistical relations in the frequency domain and is
defined as the discrete-time Fourier transformation (DTFT) of their cross-correlation, i.e.,

RXY(eiω) =
∞

∑
l=−∞

rXY(l) eiωl .

Definition 4.3. The (magnitude squared) coherence function is defined as

CXY(eiω) =
|RXY(eiω)|2

RX(eiω) RY(eiω)
.

This is sort of a correlation coefficient in the frequency domain.

4.2 LTI Systems

The notation I have been using for a stochastic process (e.g., {Xn}n∈N) is too cumbersome for
the next sections and it expresses the wrong idea of what we work with in reality. We are working
with a realization of the stochastic process {Xn}n∈N, which—from here on out—will be referred to
as x(n) (a random signal) where n is the index of a sample of a random variable in the stochastic
process {Xn}n∈N at time n. From here on out all random signals will be assumed to be stationary,
unless otherwise stated.

1almost surely, i.e., equal (in this case, less than or equal) everywhere except, possibly, on set of measure 0
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4 ANALYSIS OF STOCHASTIC PROCESSES 4.3 General Correlation Matrices

Definition 4.4. For an linear time-invariant system1 (LTI), the output can be described as

y(n) = h(n) ∗ x(n)

and this is not very surprising if you have seen any LTI system theory ever before. If the convolution
exists for all events ζ that controls the random signal x(n) such that P[ζ] = 1, then we say that
we have almost-everywhere (a.e.) convergence (see the second Borel-Cantelli Lemma for more
information).

Theorem 4.1. If x(n) is stationary, E[x(n)] < ∞, and the system h(n) is bounded-input bounded-
output (BIBO) stable, then the output y(n) converges a.e. and is stationary. Furthermore, if
E[|x(n)|2] < ∞, then E[|y(n)|2] < ∞ and y(n) converges in the mean square to the same limit
and is setationary.

Proposition 4.1 (Output mean value). If x(n) is stationary, then its first moment is the mean value
µx. The mean of the output is then

µy = ∑
Z

h(k)E[x(n− k)] = µx ∑
Z

h(k) = µx H(ei0).

Proposition 4.2 (Input-output cross-correlation).

rxy(l) = h∗(−l) ∗ rxx(l) ryx(l) = h(l) ∗ rxx(l).

Proposition 4.3 (Output autocorrelation).

ryy(l) = h(l) ∗ rxy(l).

Proposition 4.4 (Output power).
Py = ryy(0)

Remark (Output probability density function). This is a hard problem except in some cases. If x(n)
is a Gaussian process (all samples are normally distributed), then the output is also a Gaussian
process.

4.3 General Correlation Matrices

Here are some properties of correlation matrices.

Property 4.1. The correlation matrix of a random vector x is conjugate symmetric or Hermitian,
i.e.,

Rx = RH
x .

Property 4.2. The correlation of a random vector is positive semi-definite.

Property 4.3. The eigenvalues of R are real and nonnegative.

Property 4.4. Distinct eigenvalues of R correspond to orthogonal eigenvectors, i.e., if x, y are
eigenvectors, then xTy = 0.

1a system whose transfer function (generally denoted by h(t) in time) is both linear and does not change with respect
to time
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4 ANALYSIS OF STOCHASTIC PROCESSES 4.4 Spectral Dynamic Range

Property 4.5. Let {qi}M
i=1 be an orthonormal set of eigenvectors corresponding to the distinct

eigenvalues {λ}M
i=1 of an M×M correlation matrix R. Then R can be diagonalized as

Λ = QHRQ

where the orthonormal matrix Q := [q1 · · · qM] is known as an eigenmatrix and Λ is an M×M
diagonal eigenvalue matrix.

Property 4.6. The determinants of R and Γ are related by

|R| = |Γ|(1 + µH
x Γxµx).

4.4 Spectral Dynamic Range

Definition 4.5. The condition number χ(·) = λmax/λmin. A matrix is said to be ill conditioned
when χ(·) is large and well conditioned when χ(·) is small. This is not well-defined, since it
relates to how much the output value of the linear transformation can change for a small change
in the input, i.e., sensitivity to error in the system.

Definition 4.6. The dynamic range is the ratio between the largest and smallest values that a
particular quantity (e.g., for a radio signal the dynamic range would correspond to the maximum
amplitude before clipping and the minimum before quantization errors).

When Rx is a correlation matrix of a stationary process, then χ(Rx) is bounded above by the
dynamic range of the PSD Rx(eiω) of the process x(n). The larger the spread in eigenvalues, the
wider (or less flat) the variation of the PSD function. This is related to the dynamic range or to the
data spread in x(n), and the result is given by the following theorem.

Theorem 4.2. Consider a zero-mean stationary random process with PSD

R(eiω) =
∞

∑
l=−∞

r(l)e−iωl

then min
ω

R(eiω) ≤ λj ≤ max
ω

R(eiω) for all j = 1, 2, . . . , M.

4.5 Innovations Representation

It is often desirable to represent a random vector with a linearly equivalent vector consisting of
uncorrelated components. If x is a correlated random vector and if A is a nonsingular1 matrix,
then the linear transformation

w = Ax (1)

results in a random vector w that contains the same “information” as x, so x and w are said to
be linearly equivalent. If w is an uncorrelated random vector, then each component “adds” new
information (or innovation2) not present in other components. Such a representation is called
an innovations representation3 and provides additional insight into the understanding of random
vectors and sequences. It also can simplify calculation and result in computationally efficient
implementations.

1invertible
2an awful choice of wording
3emetic
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4 ANALYSIS OF STOCHASTIC PROCESSES 4.5 Innovations Representation

4.5.1 Transformations Using Eigendecomposition

Let x be a random vector with mean vector µx and covariance matrix Γx. Let x0 = x− µx.

Orthonormal Transformation Let Qx be the eigenmatrix1 of Γx. Let A = QH
x as in equation 1.

Consider
w = QH

x x0

then
µw = QH

x E[x0] = 0

and, it turns out,
Γw = Rw = E[QH

x x0xH
0 Qx] = QH

x ΓxQx = Λx

where Λx is the diagonal eigenvalue matrix of Γx.

Property 4.7.

1. The random vector w has zero mean, and its components are mutually uncorrelated (and
hence orthogonal). Furthermore, if x is N(µx, Γx), then w is N(0, Λx).

2. The variances of wi for i = 1, . . . , M are equal to the eigenvalues of Γx.

3. Since the transformation matrix A = QH
x is orthonormal, the transformation is called an

orthonormal transformation and the distance measure

d2(x0) := xH
0 Γ−1

x x0,

called the Mahalanobis distance, is preserved under the transformation. It is related to the
log-likelihood function.

Isotropic (or Whitening) Transformation In the orthonormal transformation, the resulting auto-
correlation matrix Rw is diagonal but not an identity matrix. This can be achieved by an additional
linear mapping Λ−1/2

x . Let
y = Λ−1/2

x w = Λ−1/2
x QH

x x0

and
Ry = Λ−1/2

x QH
x ΓxQxΛ−1/2

x = Λ−1/2
x ΛxΛ−1/2

x = I.

This is called an isotropic2 (or whitening) transformation because all components of y are zero-
mean, uncorrelated random variables with unit variance.

4.5.2 Transformations Using Triangular Decomposition

The linear transformations in the previous section were based on diagonalization of Hermitian
matrices through eigenvalue-eigenvector decomposition (important in detection and estimation
tasks). Triangular matrix decomposition leads to transformations that result in causal or anticausal
linear filtering of associated sequences (so these are important in linear filtering tasks).

1the matrix of eigenvectors
2directionally invariant
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4 ANALYSIS OF STOCHASTIC PROCESSES 4.6 Estimation Theory

Lower-diagonal-upper decomposition Any Hermitian, positive matrix R can be factored as

R = LDLL

where L is a unit lower triangular1 matrix, DL is a diagonal matrix with positive elements, and LH

is a unit upper triangular matrix.

Since L is unit lower triangular, |R| = ∏M
i=1 ξ l

i where ξ l
i are the diagonal elements of DL. Define

w = L−1x := Bx

then
Rw = E[wwH ] = L−1E[xxH ]L−H = L−1RL−H = DL

which implies that the components of w are orthogonal, and the elements ξ l
i are their second

moments.

The matrix B can be interpreted as causual linear filtering. this transformation is used in optimal
linear filtering and prediction problems.

A similar LDU decomposition of autocovariance matrices can be performed which will result in a
w such that components are uncorrelated and the elements ξ l

i of DL are variances.

Note that the upper-diagonal-lower decomposition is nearly the same, but with the obvious diff-
ences, and it is used for anticausal filtering.

4.6 Estimation Theory

Up until now, we have assumed that the probability distributions associated with the problem under
consideration were known. In most practical applications, this is not the case. Thus, we want
to obtain the properties and parameters of random variables and processes to collecting and
analyzing finite sets of measurements.

4.6.1 Properties of Estimators

Suppose that we collect N observations {x(n)}N−1
0 from a stationary stochastic process and use

them to estimate a parameter θ of the process using some function θ̂[{x(n)}N−1
0 ]. The same

results can be used on a set of measurements {xk(n)}M
k=1 obtained from M sensors sampling

stochastic processes with the same distributions. The function θ̂ is known as an estimator and the
value taken by the estimator, given a particular set of observations, is called a (point) estimate.

Here are two trivial examples of estimators:

1. The mean estimator: µ̂x = 1
N ∑N−1

n=0 x(n).

2. The variance estimator: σ̂2
x = 1

N ∑N−1
n=0 [x(n)− µ̂x]2.

1unit lower/upper means that the all diagonal elements equal 1
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4 ANALYSIS OF STOCHASTIC PROCESSES 4.6 Estimation Theory

If we repeat this a large number of times (see law of large numbers, Theorem 2.1), we will obtain a
large number of estimates which we can aggregate into a single random variable whose histogram
approximates the distribution; this is called the sampling distribution.

The sampling distribution of a “good” estimator should be concentrated as closely as possible
around the parameter that it estimates.

Definition 4.7 (Bias of estimator). The bias of an estimator θ̂ of a parameter θ is defined as

B(θ̂) := E[θ̂]− θ

while the normalized bias is defined as

εb =
B(θ̂)

θ
, θ 6= 0.

When B(θ̂) = 0, then the estimator is said to be unbiased and the pdf centered at the true value
θ.

Definition 4.8 (Variance of estimator). The variance of the estimator θ̂ is defined by

Var(θ̂) = σ2
θ̂

:= E[|θ̂ −E[θ̂]|2]

which measures the spread of the pdf of θ̂ around its mean.1

Definition 4.9 (Normalized standard deviation). The normalized standard deviation is defined by

εr :=
σθ̂

θ
, θ 6= 0.

Definition 4.10 (Mean square error). The mean square error (MSE) of the estimator is given by

MSE(θ) = E[|θ̂ − θ|2] = σ2
θ̂
+ |B|2.

The normalized MSE is defined as

ε =
MSE(θ)

θ
, θ 6= 0.

Remark. Minimizing MSE can lead to an increase in bias.

Definition 4.11 (Cramér-Rao lower bound). If it is possible to minimize the MSE and have bias
equal to zero, then the variance is also minimized. Such estimators are called minimum variance
unbiased estimators, and they attain an important minimum bound on the variance of the estimator
called the Cramér-Rao lower bound (CRLB), or minimum variance bound. If θ̂ is unbiased, then it
follows that E[θ̂ − θ] = 0, which can be expressed as∫

· · ·
∫
(θ̂ − θ) fx;θ(x; θ)dx = 0

1In machine learning, when the bias of a hypothesis (equivalent to the estimator in estimation theory) is “high” it is
generally a good idea to incorporate more features into the hypothesis or higher-order polynomial (or non-linear) terms.
When the variance of the hypothesis is high, it is often a good idea to get more training data such that the hypothesis
better fits the data. There is also the idea of adding a regularization term to the hypothesis which trades off bias and
variance. High variance often means that the hypothesis is overfit to the data, and does not generalize well to unseen
data. High bias often means that the hypothesis is underfit to the data, i.e., the hypothesis doesn’t perform well even
on the training set.
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where fx;θ(x; θ) is the joint density of the random vector x which depends on the fixed but unknown
parameter θ... (derivation)... presto bingo! the CRLB can be expressed as

Var(θ̂) ≥ − 1

E
[

∂2 ln fx;θ(x;θ)
dθ2

]
Definition 4.12. The function ln fx;θ(x; θ) is called the log likelihood function of θ. The CRLB
expresses the minimum error variance of any estimator θ̂ of θ in terms of the joint density fx;θ(x; θ)
of observations. So every unbiased estimator must have a variance greater than a certain number.
An unbiased estimate that satisfies the CRLB with equality is called an efficient estimate. If there
exists an efficient estimate, then it can be obtained as a unique solution to the likelihood equation

∂ ln fx;θ(x; θ)

∂θ
= 0.

The solution of the above is called the maximum likelihood (ML) estimate.

Remark. If the efficient estimate does not exist, then the ML estimate will not achieve the lower
bound and it is difficult to ascertain how closely the variance of any estimate will approach the
bound.

Definition 4.13 (Consistency of estimator). If the MSE of the estimator can be made to approach
zero as sample size N becomes large, then both the bias and variance will tend to zero. The
sampling distribution will tend to concentrate around θ and will converge to a Dirac measure δθ(·)
as N → ∞. An estimator with this property is called a consistent estimator.

Definition 4.14 (Confidence interval). If we know the sampling distribution of an estimator, we
can use the observations to compute an interval that has a specified probability of covering the
unknown true parameter value. This interval is called a confidence interval and the coverage
probability is called the confidence level.

Remark. The confidence interval is a random variable, but not the parameter.

Remark. The variance of the estimator increases as the amount of correlation among samples of
x(n) increases. For this reason, estimation of long-memory processes1 are processes with infinite
variance are very difficult.

5 Optimal Linear Filters

Optimal linear filters are filters that minimize the mean square error (MSE). The mimimum MSE
(MMSE) criterion leads to a theory of linear filtering that only involves known second moment
statistics of both the signal (desired system response) and the (additive) noise, i.e., the autocorre-
lation function and—more useful—the power spectral density (which is equivalent to the autocor-
relation).

1the rate of decay of statistical dependence of two points with increasing time interval decays more slowly than an
exponential decay. Look here for more information.
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5 OPTIMAL LINEAR FILTERS 5.1 Optimal Signal Estimation

5.1 Optimal Signal Estimation

We will formulate and solve the following estimation problem: Given a set of data xk(n) for 1 ≤
k ≤ M, determine an estimate ŷ(n), of the desired response y(n), using the rule (estimator)

ŷ(n) := H[xk(n)], 1 ≤ k ≤ M

which, in general, is a nonlinear function of the data.

Definition 5.1. The difference between the estimated response ŷ(n) and the desired response
y(n) is

e(n) := ŷ(n)− y(n)

and is known as the error signal.

We want to find an estimator whose output approximates the desired response as closely as
possible according to a performance criterion. This is called an optimal estimator or optimal signal
processor.

Remark. If the criterion of performance or the assumptions about the statistics of the processed
signals change, the corresponding optimal filter will change as well. So an optimal estimator is
designed for a specific performance criterion and assumption, and is only optimal under those
conditions.

Thus, the design of an optimal estimator involves the following steps:

1. Selection of a computational structure with well-defined parameters for the implementation
of the estimator.

2. Selection of a criterion of performance or cost function that measures the performance of
the estimator under some assumptions about the statistical properties of the signals to be
processed.

3. Optimization of the performance criterion to determine the parameters of the optimal estima-
tor.

4. Evaluation of the optimal value of the performance criterion to determine whether the optimal
estimator satisfies the design specifications.

In most applications, negative and positive errors are equally harmful. In these applications we
choose a criterion that weights both equally. Some functions that satisfy the requirement are the
absolute value of the error |e(n)| or squared error |e(n)|2 or some other power of |e(n)|.

Remark. Squared error emphasizes outliers heavier than absolute value (among other nice prop-
erties).

Note that we want to design an estimator that performs well across the entire ensemble of a
random signal, i.e., performs well on average. Since at any time y(n), xk(n) for k ∈ [1, M], and
e(n) are random variables, we need a criterion that involves the ensemble or time averaging of
some function of |e(n)|. Here are some:

1. The mean square error criterion
P(n) := E[|e(n)|2]

which leads, in general, to a nonlinear optimal estimator.
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5 OPTIMAL LINEAR FILTERS 5.2 Linear Mean Square Error Estimation

2. The mean αth-order error criterion, i.e., E[|e(n)|α]. Useful for certain types of non-Gaussian
statistics (better than MSE).

3. The sum of squared errors (SSE)

E(ni, n f ) :=
n f

∑
n=ni

|e(n)|2

which, if it is divided by n f − ni + 1, provides an estimate of the MSE.

5.2 Linear Mean Square Error Estimation

This sections develops the theory of linear MSE estimation, concentrating on linear estimators.
The problem can be stated as:

Design an estimator that provides an estimate ŷ(n) of the desired response y(n) using a
linear combination of the data xk(n) for k ∈ [1, M] such that the MSE E[|y(n)− ŷ(n)|2] is
minimized.

We formulate the estimation problem at a fixed time N, so we drop the index notation and we can
restate the problem as follows:

Estimate a random variable y (desired response) from a set of related random variables
x1, x2, . . . , xM (data) using the linear estimator

ŷ = cHx (2)

where
x = [x1 x2 · · · xM]T

is the input data vector and
c = [c1 c2 · · · cM]T

is the parameter or coefficient vector of the estimator.

Unless stated otherwise, all random variables have zero-mean. The number M of data compo-
nents used is called the order of the estimator. The operation in equation 2 is known as the linear
combiner. The MSE

P := E[|e|2] (3)

where e := y− ŷ is a function of the parameters ck ∈ c. Minimization of equation 3 with respect
to parameters leads to a linear estimator, denoted by co, that is optimal in the MSE sense. The
parameter vector co is known as the linear MMSE (LMMSE) estimator and ŷo as the LMMSE
estimate.
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5 OPTIMAL LINEAR FILTERS 5.2 Linear Mean Square Error Estimation

5.2.1 Error Performance Surface

The error surface for the LMMSE is given by

P(c) = Py − cHd− dHc + cHRc

where
Py := E[|y2|]

is the power of the desired response,
d := E[xy∗]

is the cross-correlation vector between the data vector x and the desired response y, and

R := E[xxH ]

is the correlation matrix of the data vector x. Let’s hope that P(c) is convex!

Remark. The existence of the optimal estimator is guaranteed if the correlation matrix R is positive
definite—this is almost always the case in real applications.

Also, the worst case scenario is that x and y are uncorrelated, i.e., d = 0, because there is no
linear estimator that can reduce the MSE.

Definition 5.2. Let c̃ be the deviation from the optimal vector co, i.e., c = co + c̃. Then the excess
MSE is defined as

Excess MSE := P(c)− P(co) = c̃HRc̃.

5.2.2 Summary

Theorem 5.1 (Orthogonality theorem). Let ŷ = aHx, where a is a vector of coefficients, x is a
vector of observations, and ŷ is the estimation. Let e = y− ŷ be the error in estimation. Then a
minimizes the mean square error σ2

e = E[|e|2] if a is chosen such that E[xie∗] = E[ex∗i ] = 0, for
i = 1, 2, . . . , N, that is, if the error is orthogonal to the observations. Further, the minimum mean
square error is given by σ2

e = E[ye∗] = E[ey∗].

1. The optimal estimator and the MMSE depend only on the second-order moments of the
desired response and the data.

2. The error performance surface of the optimal estimator is a quadratic function of its coeffi-
cients. If the data correlation matrix is positive definite, then this function is convex.

3. If the data correlation matrix R is positive definite, then any deviation from the optimum
increases the MMSE according to Definition 5.2. he resulting excess MSE depends on R
only.

4. When the estimator operates with the optimal set of coefficients, the error eo is uncorrelated
(orthogonal) to both the data x and the optimal estimate ŷo.

5. The MMSE, the optimal estimator, and the optimal estimate can be expressed in terms of
the eigenvalues and eigenvectors of the data correlation matrix.
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6 LINEAR PREDICTION

6. The general estimator
ŷ := h(x)

that minimizes the MSE
P = E[|y− h(x)|2]

with respect to h(x) is given by the mean conditional density, i.e.,

ŷo := ho(x) = E[y|x] =
∫ ∞

−∞
y fy(y|x) dy

and is a nonlinear function of x. If the desired response and the data are jointly Gaussian,
the linear MMSE estimator is the best in the MMSE sense.

Linear MMSE estimation involves the following computational steps:

1. R = E[xxH ], d = E[xy∗] Normal equations Rco = d

2. R = LDLH Triangular decomposition
3. LDk = d Forward substitution → k

4. LHco = k Backward substitution → co

5. Po = kHDk MMSE computation

6. e = y− cH
o x Computation of residuals

For more details look in [1], Chapter 6.

6 Linear Prediction

Linear prediction deals with the problem of estimating the value x(n) of a signal at a specific time
n = n0, as a linear combination of a set of disjoint values. In this section, we will only consider
forward prediction, but note that backward “prediction” based on future values is also possible.
Thus we are concerned with the case when we predict the current value x(n) on previous values,
i.e.,

x̂(n) = aHx(n) for a = [−a1 · · · − aP]
T, x(n) := [x(n− 1) · · · x(n− P)]T

where a are the linear prediction coefficients. We define the error in the estimate as

e(n) = x(n)− x̂(n). (4)

a and the prediction error variance σ2
e = E[|e(n)|2] are the linear prediction parameters.

For convenience, let’s prepend a 1 to a and x(n) to x and call this new vector x̃, then e(n) =
aHx(n). To find the optimal filter coefficients apply the Orthogonality Theorem 5.1. Then

E[x̃(n)e∗(n)] = σ2
e ı

where ı ∈ CP+1 and it is the unit vector pointing in the direction of the first coordinate.

Since R̃x = E[x̃x̃H ], it follows that
R̃xa = σ2

e ı, (5)

which represents the normal equations (the equations that solve for the optimal parameter values).
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6.1 Autoregressive Model

Let’s model the signal as the output of an all-pole (i.e., no zeros in the z-domain1) filter driven
by white noise. Note that this makes the signal an innovations process. We can then model the
process, x(n) as a recursive system of the form

x(n) = cTx + w(n)

which is equivalent to equation 4, but we are switching out a for c and e for w. Clearly, though, this is
just linear regression where the “dependent” variable x(n) is represented as a linear combination
of the “independent” variables x(n− 1) to x(n− P). Since they both belong to the same random
process, x(n) is called an autoregressive or AR process (regressed upon itself).

Remark. We use a slight alteration of the normal equations (Equation 5) to find the optimal values
for c, in this case, which is called the Yule-Walker equations. The only difference is that the
conjugate transpose of the autocorrelation matrix is used.

The fact that AR model parameters satisfy Yule-Walker equations provides a practical method for
signal modeling. Suppose we want to represent x(n) by some AR model. The correlation function
Rx(l) can be estimated and used in the Yule-Walker equations to solve for the model parameters.
This procedure is identical to that involved in solving for the filter coefficients in a linear prediction
problem. Cool. Refer to Chapter 8 in [3] for more implementation details.

7 Least-Squares Error Estimation

In this section, we will deal with the design and properties of linear combiners, finite impulse
response filters, and linear predictors that are optimal in the least-squares error (LSE) sense.
This differs from optimal filters or previously discussed linear predictors, since for LSE, we do not
require knowledge a priori of the second order moments. Thus, here, we use the minimization of
the sum of the squares of the estimation error as the criterion of performance for the design of
optimal filters. This method is known as least-squares error (LSE) estimation, which requires the
measurement of both the input signal and the desired response signal.

Why estimate values of a known desired response signal? This is useful in several respects:

1. Want to obtain a mathematical model describing input-output behavior of an actual system.

2. Linear predictive coding, the prediction error or prediction coefficients are useful.

3. When the desired response is not available—but the data does not change significantly over
a number of sets—then one complete training set can be used to design the estimator, which
can be applied to the remaining incomplete sets.

In summary, if we only have a block of data, then we use the LSE estimator. If we know the
second order moments, then we use the MMSE estimator. Note that if the sampled process is
ergodic, then as the length of the data increases, the LSE estimator converges towards the MMSE
estimator.

1The z-domain being the target space of the z-transform of the filter coefficients
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8 PARAMETRIC SPECTRUM ESTIMATION 7.1 Problem

Remark. This is just linear regression, e.g., a supervised learning technique in the domain of
machine learning (and truly standard fare in any statistical domain). Essentially, we have a labeled
set 1 of training data that we are using to make an estimator and the figure of merit for the estimator
is that which minimizes the sum of square errors.

7.1 Problem

I’m just going to pose the problem, and then move on.

θ̂ = arg min
θ

(θTx− y)H(θTx− y)

where θ̂ are the estimated parameters, x is the input data vector, and y is the output (or desired
response) vector. There are approximately 101010

implementations that solve this problem and
there are way better explanations online compared to any of the texts used in this paper. Look
them up if you need further details.

8 Parametric Spectrum Estimation

First let’s talk about nonparametric spectrum estimation methods and preliminaries.

The Fast Fourier Transform (FFT)2 outputs the frequency content, or spectrum, of a finite length
sample of data. Windowing, implicit in taking a finite length sample of data, does also reduce the
ability to resolve the exact frequency that we are trying to measure since frequencies are binned
like a histogram. To counteract this, it is desirable to get more resolution in a data sample by zero-
padding the to-be FFT’ed data. However, this contributes to spectral leakage3. To combat spectral
leakage, we can use a different window shape (instead of the implied rectangular shape). Thus to
reduce spectral leakage, we can use windows such as the Hann, Hamming, Kaiser, or Chebyshev
window on the data. The choice depends on the applciation since each filter has different mainlobe
width/sidelobe magnitude characteristics. Algorithm 1 details a method to implement zero-padded
and windowed FFT.

Algorithm 1 Steps to FFT data with zero-padding and windowing
1: procedure MODIFIED FFT(x: data, w: window choice)
2: x′ ← x�w . � is pointwise multiplication, x and w must be same length
3: l ← LENGTH(x)
4: n← dlog2(l)e
5: p← 2n+1

6: x′′ ← add zeros to end of x′ such that x′′ is of length p.
7: f← FFT(x′′)
8: return f

Algorithm 1 avoids problems with circular convolution and maximizes the efficiency of the FFT
making the length a power of two.

1i.e., a pair (x, y) where x is the input vector (feature vector) and y is the output vector (target vector)
2an efficient algorithm—O(n log n), for n length data when log2(n) ∈N—for the discrete Fourier Transform (DFT)
3peaks in the spectrum appear where there are none
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8 PARAMETRIC SPECTRUM ESTIMATION 8.1 Minimum-Variance Spectrum Estimation

However, this is a very rudimentary method to estimate the spectrum which is called nonpara-
metric, since the method does not assume the estimator has a particular form and is data-
independent.

Often, we want to look at the spectrum with relation to the power of each frequency, i.e., the
power spectral density (mentioned in Definition 4.1). The PSD gives a physical representation of
the spectrum versus the FFT which just supplies the amplitude of frequency bins relative to one
another.

There are a myriad of other methods to estimate spectral density via nonparametric methods (i.e.,
with the FFT), such as with the periodogram. The periodogram is considered the worst; it’s the
magnitude of the FFT squared, which is justified by the Wiener-Khinchin theorem (see C.1)1. Other
(nonparametric) methods include Bartlett’s method2 and Welch’s method3 among many others.

Parametric methods of spectrum estimation, on the other hand, assume that the available signal
segment has the choice of an inappropriate signal model that will lead to erroneous results. Para-
metric methods allow us to resolve spectral peaks closer than the limit imposed by the amount of
data available, as with the nonparametric methods4. However, we must have a priori information
about the signal and noise to apply parametric methods; notably, the signal is assumed to be a
wide-sense stationary process.

Remark. Note that the text from here on out within this section is almost directly, if not directly,
copied from [1] (which seems to be almost directly taken from [3]). Since the only way to un-
derstand these estimation techniques is to understand their derivation, I just copied them over to
expedite the writing process. I added notes where some clarity was needed (for me).

8.1 Minimum-Variance Spectrum Estimation

Note that a spectrum estimator’s goal is to determine the power content of a signal at a certain
frequency. Thus, we would like to measure the power spectral density R(ei2π f ) at the frequency of
interest only and not have our estimate influenced by energy present at other frequencies. Thus
we might interpret spectral estimation as a method to determine the ideal frequency-selective filter.

Definition 8.1. A filter bank is an array of band-pass filters that separates the input signal into
multiple components, each one carrying a single frequency subband of the original signal.

It turns out that we can derive the minimum-variance spectral estimator by using a filter bank
structure in which each of the filters adapts its response to the data. Each filter hk in the filter bank
should pass energy within its bandwidth ∆ f but reject all other energy, i.e.,

|Hk(ei2π f )|2 =

{
∆ f | f − fk| ≤ ∆ f

2

0 otherwise
(6)

where Hk is the frequency response of the filter fk. The factor ∆ f ∼ 1/M accounts for the filter
bandwidth, where M is the window length of the data5. This term is a normalization term such

1since we are using finite length data, it turns out the right way to see the power spectrum in this manner is to use
the circular autocorrelation of the data and then taking the FFT

2average of periodograms taken from multiple segments of the signal to reduce variance
3windowed version of Bartlett’s that uses overlapping segments
4resolution of the DFT is proportional to the amount of input data
5DFT based methods resolve frequencies to approximately ∆ f ∼ 1/M
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8 PARAMETRIC SPECTRUM ESTIMATION 8.1 Minimum-Variance Spectrum Estimation

that the filter does not impart a gain across the bandwidth of the filter. However, such an ideal
filter does not exist in practice. Thus we need to design a filter that passes energy at the center
frequency while rejecting as much out of band energy as possible.

A filter bank-based spectral estimator should have filters at all frequencies of interest. The filters
should have equal spacing in frequency, spanning the fundamental frequency range − 1

2 ≤ f < 1
2 .

Let us denote the total number of frequencies by K and the center frequency of the kth filter as

fk =
k− 1

K
− 1

2

for k = 1, 2, . . . , K. The output of the kth filter is equal to

yk(n) = hk(n) ∗ x(n) = cH
k x(n)

where
ck = [h∗k (0) h∗k (1) · · · h∗k (M− 1)]T

is the impulse response of the kth filter and

x(n) = [x(n) · · · x(n−M + 1)]

is the input data vector.

Let v( f ) be the frequency vector which is a vector of complex exponentials at frequency f within
the vector x(n).

v( f ) = [1 e−i2π f · · · ei2π f (M−1)]T

Note that if ck = v, then the filter bank just performs a DFT.

The output yk(n) of the kth filter should ideally give an estimate of the power spectrum at fk. The
output power of the kth filter is

E[|yk(n)|2] = cH
k Rxck

where Rx is the correlation matrix of x. Since the ideal filter response in equation 6 cannot be
realized, we instead constrain our filter ck to have a response at the center frequency fk of

Hk( fk) = |cH
k v( fk)|2 =

1
M

. (7)

This ensures that the center frequency of our bandpass filter is at the frequency fk. To eliminate as
much out-of-band energy as possible, the filter is formulated as the filter that minimizes its output
power subject to the center frequency constraint in equation 7, i.e.,

min cH
k Rxck subject to cH

k v( fk) =
1√
M

.

This constraint requires the filter to have a response of 1/
√

M to a frequency vector at the fre-
quency of interest while minimizing energy from all other frequencies. The solution to this con-
strained optimization problem can be found via Lagrange multipliers, and it is

ck =

√
MR−1

x v( fk)

vH( fk)R−1
x v( fk)

.

25 of 52 Array Processing
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The power of the signal, i.e., E[|yk(n)|2], is the minimum-variance spectral estimate

R̂mv
M (ei2π fk) = E[|yk(n)|2] =

M
vH( fk)R−1

x v( fk)
.

Note that in order to compute the minimum-variance spectral estimate, we need to find the inverse
of the correlation matrix, which is a Toeplitz matrix since x(n) is stationary (e.g. can be calculated
via Levinson recursion or other efficient algorithms).

8.2 Harmonic Models and Frequency Estimation

Often we can model a signal as an LTI system that is excited by white noise. However, often,
signals of interest are complex exponentials embedded in white noise for which a sinusoidal or
harmonic model is more appropriate. Signals consisting of complex exponentials are found in
such settings as radar and array signal processing as moving targets and spatially propagating
signals, respectively.

For complex exponentials found in noise, the parameters of interest are the frequencies of the
signals. Thus, we want to estimate these frequencies from the data. We could estimate them with
nonparametric methods, as described previous, and then the frequency estimates of the com-
plex exponentials are the frequencies at which peaks occur in the spectrum. However, while this
method works reasonably well, it does not take into account for the underlying model of complex
exponentials in noise. Use of the appropriate model is desirable from both an intuitive point of view
and in terms of performance. With the appropriate model we can resolve complex exponentials
more closely spaced in frequency, the techniques associated with this are dubbed superresolution
methods.

8.2.1 Harmonic Model

Consider the signal model that consists of P complex exponentials in noise, i.e.,

x(n) = αTν(n) + w(n)

where ν is a vector of P unit-length complex exponentials at frequencies fp for p = 1, . . . , P; α are
some coefficients αp ∈ C; and w(n) is white noise. The normalized, discrete-time frequency of the
pth component is

fp =
ωp

2π
=

Fp

Fs

where ωp is the discrete-time frequency in radians, Fp is the actual frequency of the pth complex
exponential, and Fs is the sampling frequency. The complex exponentials may occur either in-
dividually or in complex conjugate pairs (i.e., (z, z∗) for z ∈ C), as in the case of real signals1.
In general, we want to estimate the frequencies and potentially the amplitudes of these signals.
Note that the phase of each complex exponential is contained in the coefficient of the complex
exponential, that is,

αp = |αp|eiψp

1eiω = sin(ω) + i cos(ω); (eiω)∗ = e−iω = cos(ω)− i sin(ω); eiω + (eiω)∗ = 2 cos(ω) ∈ R
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8 PARAMETRIC SPECTRUM ESTIMATION 8.2 Harmonic Models and Frequency Estimation

where the phases ψp are uncorrelated random variables uniformly distributed over [0, 2π]. The
magnitude |αp| and frequency fp are deterministic quantities.

If we consider the spectrum of a harmonic process1, we note that it consists of a set of impules
with a constant level at the power of the white noise σ2

w = E[|w(n)|2]. As a result, the power
spectrum of complex exponentials is commonly refered to as a line spectrum2.

Now let’s characterize the signal model in the form of a vector over time, i.e.,

x(n) = [x(n) x(n + 1) · · · x(n + M− 1)]T = (αTν(n))v( fp) + w(n) = s(n) + w(n) (8)

where w(n) = [w(n) w(n + 1) · · · w(n + M− 1)]T is the time-window vector of white noise and

v( f ) = [1 ei2π f · · · ei2π(M−1) f ]T

is the time-window frequency vector3. s(n) is the signal, and w(n) is the noise.

The autocorrelation matrix of this model can be written as the sum of signal and noise autocorre-
lation matrices, i.e.,

Rx = E[x(n)xH(n)] = Rs + Rw

= VAVH + σ2
wI

where
V = [v( f1) v( f2) · · · v( fp)

is an M× P matrix whose columns are the time-window frequency vectors at frequencies fp of the
complex exponentials and

A =


|α1|2 0 · · · 0

0 |α2|2
. . .

...
...

. . . . . . 0
0 · · · 0 |αP|2


is a diagonal matrix of the powers of each of the respective complex exponentials.

The autocorrelation matrix of the white noise is

Rw = σ2
wI

which is full rank, as opposed to Rs, which is rank-deficient for P < M. Thus it is good practice to
use M > P.

The autocorrelation matrix can also be written in terms of its eigendecomposition

Rx = QΛQH

1A harmonic process is defined by x(n) = ∑M
k=1 Ak cos(ωkn + φk) and ωk 6= 0, where M, {Ak}M

1 , and {ωk}M
1 are

constants and {φk}M
1 are pairwise independent random variables uniformly distributed in the interval [0, 2π]. x(n) is a

stationary process with mean E[x(n)] = 0 for all n and autocorellation rx(l) = 1
2 ∑N

k=1 A2
k cos(ωkl) for −∞ < l < ∞.

2Doesn’t really make sense, but sure. I suppose “line with spikes spectrum” didn’t have the same ring.
3this is terrible notation to time-shift the results so that it lines up with equation 8. Unclear and terrible, but I’m

following [1] here so blame them.
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where Λ is a diagonal matrix of the eigenvalues in descending order, and Q is made up of the
corresponding eigenvectors. The eigenvalues due to the signals can be written as the sum of the
signal power in the time window and the noise:

λm = M|αm|2 + σ2
w for m ≤ P. (9)

The remaining eigenvalues are due to the noise only, i.e.,

λm = σ2
w for m > P.

Thus the P largest eigenvalues correspond to the signal made up of complex exponentials and the
remaining eigenvalues have equal value and correspond to the noise. Thus we can partition the
correlation matrix into portions due to the signal and noise eigenvectors, i.e.,

Rx = QsΛsQH
s + σ2

wQwQH
w (10)

where
Qs = [q1 · · · qP] Qw = [qP+1 · · · qM]

are matrices whose columns consist of the signal and noise eigenvectors, respectively. The matrix
Λs is a P× P diagonal matrix containing the eigenvalues in equation 9. Thus the M-dimensional
subspace that contains the observations of the time-window signal vector from equation 8 can be
split into two subspaces spanned by the signal and noise eigenvectors, respectively. These two
subspaces, known as the signal subspace and the noise subspace, are orthogonal to each other
since the correlation matrix is Hermitian symmetric1.

Note that the projection matrix from an M-dimensional space onto and L-dimensional subspace,
where L < M, spanned by a set of vectors Z = [z1 z2 · · · zL] is

P = Z(ZHZ)−1ZH.

Thus, we can write the matrices that project an arbitrary vector onto the signal and noise sub-
spaces as

Ps = QsQH
s Pw = QwQH

w

since the eigenvectors of the correlation matrix are orthonormal (QH
s,wQs,w = I). Since the two

subspaces are orthogonal
PwQs = 0 PsQw = 0

then all the time-window frequency vectors v( f ) must lie completely in the signal subspace, i.e.,

Psv( fp) = v( fp) Pwv( fp) = 0.

These concepts are central to the following subspace-based frequency estimation methods.

Note that the correlation matrix is not known and must be estimated from the measured data
samples. If we have a time-window vector as in equation 8, then we can form the data matrix by
stacking the rows with measurements of the time-window data vector at a time n, i.e.,

X =



xT(0)
xT(1)

...
xT(n)

...
xT(N − 2)
xT(N − 1)


=



x(0) x(1) · · · x(M− 1)
x(1) x(2) · · · x(M)

...
...

...
...

x(n) x(n + 1) · · · x(n + M− 1)
...

...
...

...
x(N − 2) x(N − 1) · · · x(N + M− 3)
x(N − 1) x(N) · · · x(N + M− 2)


1the eigenvectors of a Hermitian symmetric matrix are orthogonal
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which has dimensions of N×M, where N is the number of data records and M is the time-window
length. From this we can form an estimate of the correlation matrix, called the sample correlation
matrix

R̂x =
1
N

XHX. (11)

In this case, the noise eigenvalues are no longer equal because of the finite number of samples
used to compute R̂. Thus, there is not a clean threshold between signal and noise eigenvalues,
as described in equation 9, so P must be estimated via some other technique. Note that there is
some performance degradation compared to the true correlation matrix; however, this is the best
we have to work with in reality.

8.3 Pisarenko Harmonic Decomposition

The Pisarenko harmonic decomposition (PHD) is stated here since it motivates the MUSIC and
ESPRIT subspace methods, however it is too sensitive to noise for practical use. The PHD method
uses the eigenvector associated witht he smallest eigenvalue to estimate the frequencies of the
complex exponentials.

Consider the model of complex exponentials contained in noise proposed in equation 8 and the
eigendecomposition of its correlation matrix in equation 10. The eigenvector corresponding to
the minimum eigenvalue must be orthogonal to all the eigenvectors in the signal space. Thus we
choose the time window to be of length M = P + 1, i.e., 1 greater than the number of complex
exponentials. Therefore the noise subspace consists of a single eigenvector

Qw = qM

corresponding to the minimum eigenvalue λM. Since the signal and noise subspaces are orthog-
onal, each of the P complex exponentials in the time-window signal vector model is orthogonal to
this eigenvector, i.e.,

vH( fp)qM = 0 for p ≤ P.

Thus we can compute

R̄phd(ei2π f ) =
1

|vH( f )qM|2
=

1
|QM(ei2π f )|2

which is commonly referred to as the pseudospectrum (since it does not contain information about
the powers of the complex exponentials or the background level noise).

The frequencies are then estimated by observing the P peaks in R̄phd. Alternately, the frequencies
of the complex exponentials can be found by computing the zeros of the Fourier transform of the
Mth eigenvector.

8.4 MUSIC Algorithm

The multiple signal classification (MUSIC) frequency estimation method extends the PHD method
by allowing M > P + 1. Therefore the noise subspace has a dimension greater than 1 which
allows for averaging over the noise subspace, which provides a more robust frequency estimation
method compared to the PHD method.
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Note that for each eigenvector (P < m ≤ M), we have

vH( fp)qm = 0 for p ≤ P.

Thus the pseudospectrum for each noise eigenvector is computed as

R̄m(ei2π f ) =
1

|vH( f )qm|2
=

1
|Qm(ei2π f )|2

.

The polynomial Qm(ei2π f ) has M− 1 roots, P of which correspond to the frequencies of the com-
plex exponentials. These roots produce P peaks in the pseudospectrum. Note that the pseu-
dospectra of all M − P noise eigenvectors occur at different frequencies. Since there are no
constraints on the location of these roots, some may be close to the unit circle and produce extra
peaks in the pseudospectrum. A means of reducing the levels of these spurious peaks in the
pseudospectrum is to average the M− P pseudospectra of the individual noise eigenvectors, i.e.,

R̄music(ei2π f ) =
1

∑M
m=P+1 |Qm(ei2π f )|2

(12)

which is known as the MUSIC pseudospectrum.

The peaks in the MUSIC pseudospectrum correspond to the frequencies at which the denominator
in equation 12 approaches zero.

8.5 ESPRIT Algorithm

The estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm esti-
mates the signal subspace from the data matrix X instead of the estimated correlation matrix R̂x.
The core principle of ESPRIT lies in the rotational property between staggered (in time) subspaces
that is invoked to produce the frequency estimates.

Remark. ESPRIT can be extended to a spatial array of sensors, i.e., array processing. More on
that in the next section.

Consider a single complex exponential s0(n) = αei2π f n with complex amplitude α and frequency f .
This signal has the property

s0(n + 1) = αei2π f (n+1) = s0(n)ei2π f

that is, the next sample is a phase-shifted version of the current value, which is just a rotation on
the unit-circle in the complex plane.

Recall the time-window vector model from equation 8, we can rewrite that as so

x(n) = VΦnα + w(n)

where the P columns of matrix V are length-M time-window frequency vectors of complex expo-
nentials, i.e.,

V = [v( f1) v( f2) · · · v( fP)].

The vector α consists of the amplitudes of the complex exponentials αp. The matrix Φ is the diago-
nal matrix of phase-shifts between neighboring time samples of the individual complex exponential
components of s(n), i.e.,

Φ = diag(φ1, φ2, . . . , φP)
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where φp = ei2π fp for p = 1, 2, . . . , P. Note that this is a rotation matrix (since each component
causes a rotation) and the frequencies of the complex exponentials fp completely describe the
rotations. Thus the frequency estimates can be obtained by finding Φ.

Consider two overlapping subwindows of length M − 1 within the length M time-window vector,
and consider the signal consisting of the sum of complex exponentials

s(n) =
[

sM−1(n)
s(n + M− 1)

]
=

[
s(n)

sM−1(n + 1)

]
where sM−1(n) is the length-(M− 1) subwindow of s(n), i.e.,

sM−1(n) = VM−1Φnα (13)

Matrix VM−1 is constructed in the same manner as V except its time-window frequency vectors are
length M− 1. Recall that s(n) is the scalar signal made up of the sume of complex exponentials
at time n. Using equation 13, we can define the matrices

V1 = VM−1ΦnV2 = VM−1Φn+1

where V1 and V2 correspond to the unstaggered and staggered windows. Then

V2 = V1Φ. (14)

Note that each of these two matrices spans a different, though related, (M− 1)-dimensional sub-
space.

Now suppose that we have a data matrix X with N data records of the length-M time-window
vector signal x(n). We can use SVD (see A.6 for more details) to write the data matrix as

X = LΣUH

where L is an N × N matrix of left singular vectors and U is an M × M matrix of right singular
vectors. Both of these matrices are unitary. Matrix Σ has dimensions N×M consisting of singular
values on the main diagonal ordered in descending magnitude.

The squared magnitudes of the signlar values are equal to the eigenvalues of R̂ scaled by a
factor of N from equation 11, and the columns of U are their corresponding eigenvectors. Thus
U forms an orthonormal basis for the underlying M-dimensional vector space. This subspace can
be partitioned into signal and noise subspaces as

U = [Us | Un]

where Us is the matrix of right-hand singular vectors corresponding to the singular values with
the P largest magnitudes. Note that since the signal portion consists of the sum of complex
exponentials modeled as time-window frequency vectors v( f ), all these frequency vectors for
f = f1, f2, . . . , fP, must also lie in the signal subspace.

Therefore, there exists an invertible transformation T that maps Us into V, i.e.,

V = UsT.

The transformation T is not solved for in this derivation; it is just a map between the two linear
transformations within the signal subspace.
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Proceeding as we did with the matrix V, we can also partition the signal subspace into two smaller
(M− 1)-dimensional subspaces; call these U1 and U2, which correspond to the unstaggered and
staggered subspaces, respectively. Since V1 and V2 correspond to the same subspaces, then

V1 = U1T V2 = U2T. (15)

The staggered and unstaggered components of the matrix V are related through the subspace ro-
tation Φ. Since the matrices U1 and U2 also span these respective, related subspaces, a similar—
though different—rotation must exist that relates (rotates) U1 to U2, i.e.,

U2 = U1Ψ (16)

where Ψ is this rotation matrix.

Recall that frequency estimation comes down to solving for the subspace rotation matrix Φ. We
can estimate Φ by making use of the relations in equations 15, 14, and 16.

In this process, matrices U1 and U2 are known from the SVD of X. First we solve for Ψ using
least-squares (LS)

Ψ = (UH
1 U1)

−1UH
1 U2,

and it follows from equation 16 that

V2 = U2T = U1ΨT.

Similarly, V2 can be solved from equation 14 as

V2 = V1Φ = U1TΦ.

Thus, we get the following relation between the two subspace rotations

Ψ = TΦT−1.

Notice that this is a relationship between eigenvectors and eigenvalues of the matrix Ψ. Therefore,
the diagonal elements of Φ, φp for p = 1, 2, . . . , P, are simply the eigenvalues of Ψ.

Therefore, the estimates of the frequencies are

f̂p =
]φp

2π
.

Remark. The previous derivation of ESPRIT used LS; however, the preferred version uses total
least-squares. The details of the TLS version are not much different, so they are not included.

9 Array Processing Fundamentals

Array processing concerns the extration of information from signals collected with an array of
sensors. An array of sensors can focus on signals from a particular direction, i.e., serve as a
spatial filter. To filter in space, the sensor array signals are combined in such a way that a particular
direction is emphasized. Note that since the direction in which the array is focused is almost
independent of the orientation of the array, we can emphasize multiple different directions.
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9.1 Sensor Arrays

Definition 9.1. Spatial signals are signals that propagate through space. Since space is three-
dimensional, a spatial signal at a point specified by the vector r can be represented either in
Cartesian coordinates (x, y, z) or, more usually, in spherical coordinates (R, φaz, θel), where R =
‖r‖, and φaz and θel are the azimuth and elevation angles, respectively.

The propagation of a spatial signal is governed by the solution to the wave equation; for electro-
magnetic propagating signals, the wave equation can be deduced from Maxwell’s equations. In
any case, the solution for a propagating wave emanating from a source located at r0, is a single-
frequency wave given by

s(t, r) =
A

‖r− r0‖2 ei2πFc

(
t−

∥∥r−r0
∥∥

c

)

where A is the complex amplitude, Fc is the carrier frequency, and c is the speed of propagation of
the wave. In this paper, we ignore the singularity at r0. Further, we assume that the wave has the
frequency Fc at any point in space, the wave travels at constant speed, and that the medium does
not attenuate the propagating signal further than predicted by the wave equation. Additionally, we
assume the signal is produced from a point source, and that we are in the far-field (i.e., working
with plane waves).

Recall the wavelength of a spatial signal is defined as

λ =
c
Fc

.

Consider placing a linear array—uniformly spaced—in three-dimensional space in order to sense
spropagating waves, such an array is known as a uniform linear array (ULA). In this paper, we
choose the ULA to be placed on the x axis in three-dimensional space. Thus the source of a plane
wave that impinges on the ULA can be described by its distance from the origin ‖r‖ and its azimuth
and elevation angles φaz and θel, respectively. If the distance between elements of the ULA is d,
then the difference between neighboring elements for a plane wave arriving from an azimuth φaz
and elevation θel is

dx = ‖r‖ sin φaz cos θel.

These differences in the propagation distance that the plane wave must travel to each of the
sensors are a function of a general angle of arrival (AoA) with respect to the ULA φ. In three-
dimensional space, the delays are an equivalence class with respect to a cone surrounding the
ULA, i.e., a signal arriving at the ULA on a cone surface has the same set of relative delays
between the elements. Thus, the angle of incidence to a linear array is commonly referred to as a
cone angle, φcone.

Note that the cone angle is a function of azimuth and elevation defined by

sin φ = sin φaz cos θel

where φ = 90◦ − φcone. Thus we calculate the cone angle given an azimuth and elevation pair.
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9.1.1 Array Signal Model

First let’s define the signal model. Let s̃0(t) = s0(t) cos 2πFct be the modulated signal. Let φs be
the angle of the signal received by the ULA. Then the demodulated signal is

x̃m(t) = s̃0(t− τm) ∗ hm(t, φs) + w̃m(t),

where hm(t, φs) is the impulse response of the mth sensor, w̃m(t) is the noise on the mth sensor,
and τm is the signal delay on the mth sensor. Note that τm is a function of φs. This demodulated
signal is then split into two digital signals via an ADC, the final signal is denoted

xm(n) = x(I)
m (n) + ix(Q)

m (n)

where x(I)
m (n) and x(Q)

m (n) are the in-phase and quadrature components of the demodulated sig-
nal, respectively.

The discrete-time signals from a ULA may be written as a vector containing the individual sensor
signals, i.e.,

x(n) = [x1(n) x2(n) · · · xM(n)]T

where M is the total number of sensors.

Assumptions of this model is that the signal s0(t) has a deterministic amplitude and random,
uniformly distributed phase. The ˜ is used to indicate that the signal is a passband or carrier-
modulated signal.

We can also express the signal in the frequency domain as

X̃m( f ) = Hm( f , φs)S̃0( f )e−i2π f τm + W̃m( f ).

After using a low-pass filter, we get the spectrum of the signal as

Xm( f ) = Hm( f + Fc, φs)S0( f )ei2π( f+Fc)τm + Wm( f ) (17)

and Xm( f ) = X(I)
m + iX(Q)

m .

From here we assume that the bandwidth of s0(t) is small compared to the carrier frequency,
which is known as the narrowband assumption. This assumption allows us to approximate the
propagation delays of a particular signal between sensor elements with a phase shift, since the
phase difference between the upper and lower band edges for propagation across the entire array
is small.

There is no strict definition of what consitutes a narrowband assumption, but, in general, it holds for
cases in which the signal bandwidth is less than some small percentage of the carrier freqeuncy,
e.g., less than 1 percent. The ratio of the signal bandwidth to the carrier frequency is referred to as
the fractional bandwidth. Note that the fractional bandwidth for which the narrowband assumption
holds is strongly dependent on the length of the array and the strength of the received signals.
Thus it is convenient to consider the time-bandwidth product (TBWP), which is the maximum
amount of time for a spatial signal to propagate across the entire array (φs = ±90◦). If TBWP� 1,
then the narrow bandassumption is valid.
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In addition to the narrowband assumption, we assume that the response of the sensor is constant
across the receiver, i.e., Hm( f + Fc, φs) = Hm(Fc, φs) for | f | < B/2. Thus, the spectrum in equation
17 is simplified to

Xm( f ) = Hm(Fc, φs)S0( f )e−i2πFcτm + Wm( f )

and the discrete-time signal model is obtained by sampling the inverse Fourier transform of the
above, i.e.,

xm(n) = Hm(Fc, φs)s0(n)e−i2πFcτm + wm(n).

Note that we assume wm(n) has a flat PSD across the bandwidth of the receiver, i.e., the discrete-
time noise samples are uncorrelated. Also, the noise in all sensors is mutually uncorrelated. If we
further assume that each of the sensors in the array has an equal, omnidirectional response at
frequency Fc, i.e., Hm(Fc, φs) = H(Fc, φs) = constant, for 1 ≤ m ≤ M, then the constant sensor
responses can be absorbed into the signal term

s(n) = H(Fc)s0(n).

We can then, and will for the remainder of the chapter, write the full-array discrete-time signal
model as

x(n) =
√

M v(φs)s(n) + w(n) (18)

where
v(φ) =

1√
M

[1 ei2πFcτ2(φ) · · · e−i2πFcτM(φ)]T

is the array response vector. We have chosen to measure all delays relative to the first sensor
(τ1(φ) = 0) and are now indicating the dependence of these delays on φ. 1

M is used such that v
has unit norm. Another critical assumption at this point is to note that we have perfect knowledge
of the array sensor locations.

Note that the array signal model we have proposed holds for arbitrary arrays. However, we will
focus on a ULA structure with uniform spacing d between sensor elements. Then for a signal that
impinges on the ULA from an angle φ, we have the time delay between successive sensors equal
to

τ(φ) =
d sin(φ)

c

where c is the rate of propagation of the signal. As a result, the delay to the mth sensor with respect
to the first is defined as

τm(φ) = (m− 1)
d sin(φ)

c

Then we see the array response vector for a ULA is

v(φ) =
1√
M

[1 e−i2π[(d sin φ)/λ] · · · e−i2π[(d sin φ)/λ](M−1)]T (19)

since Fc = c/λ.
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9.1.2 Spatial Sampling

We can interpret a sensor array as a mechanism to spatially sample wavefronts propagating at a
certain carrier frequency. Note that sampling frequency must be high enough so as not to create
spatial ambiguities.

In an arbitrary, sampling is done in multiple dimensions and along a nonuniform grid so that it is
difficult to compare to discrete-time sampling. However, a ULA has a direct correspondence to
uniform, regular temporal sampling, since it samples uniformly in space on one axis. Thus, for a
ULA, we can talk about spatial sampling frequency Us defined by

Us =
1
d

where the spatial sampling period is determined by the interelement spacing d and is measured
in cycles per unit of length (meters).

Recall that consecutive samples of the same signal differ only by a phase shift of ei2π f , where f is
the frequency. In the case of a spatially propagating signal, this frequency is given by

U =
sin φ

λ

which can be thought of as the spatial frequency. The normalized spatial frequency is then defined
by

u :=
U
Us

=
d sin φ

λ
.

Therefore, we can rewrite the array response vector from equation 19 in terms of the normalized
spatial frequency,

v(φ) = v(u) =
1√
M

[1 e−i2πu · · · e−i2πu(M−1)]T

which is a Vandermonde vector, i.e., a vector whose elements are successive integer powers of
the same number, in this case e−i2πu.

The interelement spacing d is simply the spatial sampling interval, which is the inverse of the sam-
pling frequency. Therefore, similar to Shannon’s (or Nyquist) theorem for discrete-time sampling,
there are certain requirements on the spatial sampling frequency to avoid aliasing. Since normal-
ized frequencies are unambiguous for − 1

2 ≤ u < 1
2 and the full range of possible unambiguous

angles is −90◦ ≤ φ ≤ 90◦, the sensor spacing must be

d ≤ λ

2

to prevent spatial ambiguities. Since lowering the array spacing further than this only provides
redundant information, we generally set d = λ/2.

9.2 Beamforming

We often want to extract the information of a spatially propagating signal from a sensor array
in a certain direction. Thus, we want to linearly combine the signals from all the sensors so
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as to examine signals arriving from a specific angle. This is known as beamforming, since the
weighting process emphasizes signals from a particular direction while attenuating those from
other directions. Thus a beamformer is a spatial filter, and in the case of a ULA, it has a direct
analogy to an FIR frequency-selective filter for temporal signals.

Beamforming is commonly referred to as “electronic” steering since the weights are applied using
electronic circuitry following the reception of the signal for the purpose of steering the array in a
particular direction (in contrast to mechanical steering).

In the most general form, a beamformer produces its output by forming a weighted combination of
signals from the M elements of the sensor array, i.e.,

y(n) = cHx(n)

where
c = [c1 c2 · · · cM]T

is the column vector of beamforming weights.

9.2.1 Beam Response

To analyze the performance of a beamformer, we can look at the response of a given weight vector
c as a function of angle φ, known as the beamresponse, i.e.,

C(φ) = cHv(φ)

for φ ∈ [−90◦, 90◦). We look at |C(φ)|2 for analysis, which is known as the beampattern.

This differs from the steered response, which is the response of the array to a certain set of spatial
signals impinging on the array as we steer the array to all possible angles, this is better defined as
the spatial power spectrum, i.e.,

R(φ) = E[|cHv(φ)x(n)|2].

9.2.2 Output Signal-to-Noise Ratio

Now we determine the improvement in SNR with respect to each element, known as the beam-
forming gain. Let us use the signal model in equation 18, then the beamformer c is applied to x(n)
as

y(n) = cHx(n) =
√

M cHv(φs)s(n) + w̄(n)

where w̄ = cHw(n) is the noise at the beamformer output and is also temporally uncorrelated.

The beamformer output power is

Py = E[|y(n)|2] = cHRxc

where Rx is the correlation matrix for x.

Recall that the signal for the mth element is given by

xm(n) = e−i2π(m−1)us s(n) + wm(n)
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where us is the normalized spatial frequency of the array signal produced by s(n). The signal s(n)
is the signal of interest within a single sensor including the sensor response Hm(Fc). Therefore
the signal-to-noise ratio in each element is given by

SNRelem :=
σ2

s
σ2

w
=
|e−i2π(m−1)us s(n)|2

E[|wm(n)|2]

where σ2
s = E[|s(n)|2] and σ2

w = E[|wm(n)|2] are the element level signal and noise powers,
respectively. Recall that s(n) has deterministic amplitude and random phase, and we assume
that all the elements have equal noise power σ2

w so that the SNR does not vary from element to
element. This SNRelem is commonly referred to as the element level SNR.

Now if we consider the signals at the output of the beamformer, the signal and noise powers are
given by

Ps = E[|
√

M [cHv(φs)]s(n)|2] = Mσ2
s |cHv(φs)|2

Pn = E[|cHw(n)|2] = cHRnc = ‖c‖2 σ2
w

because Rn = σ2
wI. Therefore the resulting SNR at the beamformer output known as the array

SNR, is

SNRarray =
Ps

Pn
=

M|cHv(φs)|2

‖c‖2
σ2

s
σ2

w
=
|cHv(φs)|2

‖c‖2 M SNRelem

which is simply the product of the beamforming gain and the element level SNR. Thus, the beam-
forming gain is given by

Gb f :=
SNRarray

SNRelem
=
|cHv(φs)|2

‖c‖2 M.

The beamforming gain is strictly a function of the angle of arrival φs of the desired signal, the
beamforming weight vector c, and the number of sensors M.

9.2.3 Spatial Matched Filter

The beamforming weight vector that phase-aligns a signal from direction φs at the different array
elements is the steering vector, which is just the array response vector in that direction, i.e.,

cm f (φs) = v(φs).

The steering vector beamformer is also known as the spatial matched filter since the steering
vector is matched to the array response of signals impinging on the array from an angle φs, which
is known as the look direction. This is commonly referred to as conventional beamforming.

In this case, the beamforming gain turns out to be equal to the number of sensors, and is also
called the array gain. The spatial matched filter maximizes the SNR because the individual sensor
signals are coherently aligned prior to their combination. However, other sources of interference
that have spatial correlation require other types of adaptive beamformers that maximize the signal-
to-interference-plus-noise ratio (SINR).

The beampattern of the spatial matched filter has a large lobe centered on φs, known as the
mainbeam, and the remaining smaller peaks are known as sidelobes.
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Another attribute is the beamwidth, which is the angular span of the mainbeam. The smaller
the beamwidth, the greater the angular resolution. The beamwidth is commonly measured from
half-power (−3-dB) points ∆φ3dB or from null to null of the mainlobe ∆φnn.

9.2.4 Spacing and Aperture

Previously, we stated that element spacing must be d ≤ λ/2 to prevent spatial aliasing. However,
there are ways to use an array with element spacing d > λ/2 which is commonly referred to as a
thinned array. I won’t discuss that more here.

The aperture is the distance between the first and last element in a ULA; in an arbitrary array, the
aperture can be defined as the sensors furthest apart (it is not well defined since it can change
based on the direction of the impinging signal). In general, we want the largest aperature possible,
since resolution increases with the size of the aperature. Thus we can see closely spaced sources
and have better angle estimation capabilities.

The angular resultion of a sensor array is measured in beamwidth ∆φ. In general, the −3-dB
beamwidth for an array with an aperture length of L is quoted in radians as

∆φ3dB ≈
λ

L
.

For funsies, the actual −3-dB points of a spatial matched filter yield a resolution of ∆φ3dB =
0.89λ/L.

9.2.5 Tapered Beamforming

The spatial matched filter would be perfect if there were only one signal present, but that is most
often not the case. If these signals are in the operating frequency of the array and are not of
interest, then we call them interference. There are ways to deal with interference with both adaptive
and nonadaptive methods. Let’s first talk about nonadaptive methods, which in this case will be
with the use of a taper on a spatial matched filter.

Briefly, a taper is just a window (i.e., Hann, Hamming, Chebyshev, etc.) applied to the beamform-
ing coefficients which reduces the sidelobes at the expense of resolution and peak power. See
Algorithm 1 for an idea of what is going on.

9.3 Optimal Array Processing

Now let’s base the beamforming weights on the array data instead of a priori knowledge of direc-
tion. This leads to an adaptive array and the operation is known as adaptive beamforming. Ideally,
the beamforming weights are adapted in such a way as to optimize the spatial response of the
array to a certain criterion, i.e., enhance desired signal while rejecting unwanted signals.

To create such a system, we make use of a priori known statistics of the data to derive the beam-
forming weights. In this section, we will use the term adaptive to refer to beamformers that use an
estimated correlation matrix computed from array snapshots, while reserving the term optimal for
beamformers that optimize a certain criterion based on knowledge of the array data statistics.
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Here are some more definitions. They are pretty straight-forward, but let’s make sure we are all on
the same page.

Definition 9.2. Detection is the determination of the presense of signals of interest.

Definition 9.3. The inference of parameters from signals of interest is called estimation.

Note that we seek to maximize the visibility of the desired signal at the array output, i.e., the ratio
of the signal power to that of the interference plus noise to facilitate the detection process (in this
paper at least).

We assume that interference has spatial correlation according to the angles of the contributing
interferers. Further, in this paper, we assume that the signal of interest, the interference, and the
noise are all mutually uncorrelated.

9.3.1 Optimal Beamforming

The goal of the adaptive beamformer is to combine the sensor signals in such a way that the
interference signal is reduced to the level of the thermal noise while the desired signal is preserved,
i.e., maximize the SINR.

The SINR at each sensor is given by

SINRelem =
σ2

s

σ2
i + σ2

w

where σ2
s , σ2

i , and σ2
w are the signal, interference, and thermal noise powers in each individual

element. The SINR at the beamformer output, following the application of the beamforming weight
vector c is

SINRout =
|cHs(n)|2

E[|cHxi+n(n)|2
=

Mσ2
s |cHv(φs)|2
cHRi+nc

.

We wish to maximize this quantity.

It turns out that the maximum SINR is

SINRmax
out = Mσ2

s [v
H(φs)R−1

i+nv(φs)]

and it follows from this that the optimal coefficients are

co = αR−1
i+nv(φs)

for arbitrary constant α. However, we want unity gain in the look direction in this paper, and the
resulting beamformer is given by

co =
R−1

i+nv(φs)

vH(φs)R−1
i+nv(φs)

.

We can also find the optimal beamformer with the following optimization formulation

co = arg min
c

E[|cHxi+n|2] = arg min
c

cHRi+nc subject to cHv(φs) = 1.
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This formulation has led the optimal beamformer to be called the minimum-variance distortionless
response (MVDR) beamformer.

We will want to gauge the performance of the optimal beamformer relative to the interference-free
case. To do this we normalize the SINR by the hypothetical array output SNR with no interference
(SNR0 = Mσ2

s /σ2
w), which is known as the SINR loss,

Lsinr(φs) :=
SINRout(φs)

SNR0
= σ2

wvH(φs)R−1
i+nv(φs).

Note that the SINR loss is always between 0 and 1, and takes on the value 1 when the performance
is equal to the interference-free case. Also notice that Lsinr is the reciprocal of the minimum-
variance power spectrum of the interference plus noise.

Recall, we can apply a taper (window) to the coefficients to lower sidelobe levels in the optimal
beamformer (at the expense of “optimality”).

Note that the optimal beamformer serves as the upper bound on the performance of any adaptive
method. Two major factors that affect the performance of the optimal beamformer are

1. Mismatch of the actual signal to the assumed signal model used by the optimal beamformer,
called signal mismatch

2. Violation of the narrowband assumption on the signal.

We won’t discuss these problems here, but know that they affect performance and there are an-
alytical methods to determine the performance degradation. See Chapter 11, Section 4 in [1] for
more.

Before moving on, I will provide some definitions to improve your beamforming vocabulary bigly:

Definition 9.4.

1. The array response vector v(φ) is also referred to as the array manifold vector. Note that
the manifold vector for a particular direction contains all the information about the geometry
involved when a wave is incident on the array from that direction. By recording the locus of
the manifold vectors as a function of direction, a “continuum” (i.e., a geometrical object such
as a curve or surface) is formed lying in an N-dimensional space. The geometrical object
is known as the array manifold. The array manifold completely characterizes any array and
provides a representation of the real array into N-dimensional complex space. [6]

2. The distortionless constraint is the constraint that requires cHv(φ) = 1 which guarantees that
any signal propagating along the direction of the signal will pass through the filter undistorted.

3. The quiescent response of a beamformer is defined as

Cq(φ) = vH(φs)v(φ).

4. The eigenbeam is the beam response of the mth eigenvector defined as

Qm(φ) = qH
m v(φ).
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9.4 Adaptive Beamforming

Note that the optimal beamformer can only be achieved because we assumed prior knowledge
of the second order moments of the interference at the array, i.e., the interference-plus-noise
correlation matrix Ri+n. However, we would like to use adaptive methods that are only based on
collected data from which the correlation matrix is estimated.

9.4.1 Sample Matrix Inversion

In practice, we must estimate the correlation matrix from the data. The maximum-likelihood (ML)
estimate of the correlation matrix is given by the average of outer products of the array snapshots

R̂i+n =
1
K

K

∑
k=1

xi+n(nk)xH
i+n(nk),

where the indices nk define the K samples of xi+n(n) for 1 ≤ n ≤ N that make up the training set.

The ML estimate of the correlation matrix implies that as K → ∞, then R̂i+n → Ri+n; R̂in is known
as the sample correlation matrix. The total number of snapshots K used to compute the sample
correlation matrix is referred to as the sample support. The larger the sample support, the better
the estimate R̂i+n of the correlation matrix for stationary data.

Substituting the sample correlation matrix into the optimum beamformer weight computation re-
sults in the adaptive beamformer

csmi =
R̂−1

i+nv(φs)

vH(φs)R̂−1
i+nv(φs)

known as the sample matrix inversion (SMI) adaptive beamformer.

We can apply tapers and analyze the beamformer as before. Just recall that the more snapshots
that train the sample correlation matrix, the better the response of the beamformer.

To implement the SMI beamformer, we must estimate the interference-plus-noise correlation ma-
trix, which requires no desired signals s(n) be present. In many applications, we can turn off the
desired signal and train in listen-only mode. We can also use a split window technique, that uses
data only from before and after a signal is present.

To increase robustness of the SMI beamformer when there is limited training data, we can use
diagonal loading on the sample correlation matrix, i.e.,

R̂l = R̂i+n + σ2
l I.

Diagonal loading adds bias (reduces variance) which reduces output SINR, but gives an increased
quality of the adaptive beampattern in limited training data scenarios.

9.4.2 Other Adaptive Methods

We can compute the beamforming weights on a sample-by-sample basis; referred to as sample-
by-sample adaptive. They solve an unconstrained least-squares (LS) problem, whereas what we
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have discussed so far has solved a constrained1 LS problem. This is solved via recursive least
squares or gradient descent. Note that since these algorithms take time to converge, sample-by-
sample methods are not always practical.

We can also design a beamformer to reject energy from multiple directions while passing energy
from multiple directions. A way to solve this problem is to formulate the problem as an optimization
problem; called the linearly constrained minimum-variance (LCMV) beamformer

clcmv = arg min
c

cHRi+nc subject to CHc = δ

where C is the constraint matrix and δ is the constraint response vector. We can do a similar
operation with quadratic constraints as well (with a different formluation).

Other topics that are of interest are partially adaptive arrays, subarray partially adaptive arrays,
and beamspace partially adaptive arrays. These methods reduce the computational complexity of
processing the data collected by an array by reducing the degrees of freedom of the array (number
of places we can put a null or, equivalently, place a beam).

9.5 Angle Estimation

Now we will discuss determining an angle of arrival φs for a signal s(n).

9.5.1 Maximum-Likelihood Angle Estimation

Consider a spatially propagating signal of interest

s =
√

M σsv(φs)

where M is the number of sensors in the ULA, σs is the complex amplitude of the signal, and φs is
the angle of arrival of the signal relative to the sensor array. The signal received by the ULA has
both interference i and spatially uncorrelated thermal noise w, i.e.,

x = s + i + w = s + xi+n.

We are not using the discrete-time index n since we are assuming the signal is present and we are
interested in a single snapshot only. The interference-plus-noise correlation matrix of x is given by

Ri+n = E[xi+nxH
i+n] = Ri + σ2

wI.

We also assume that the interference-plus-noise signal xi+n has a complex Gaussian density
function with zero mean. Thus, the probability density function of the snapshot is a complex
Gaussian function with a mean determined by the signal of interest, i.e.,

f (x; σs, φs) =
1

πM det(Ri+n)
exp

(
−[x− s]HR−1

i+n[x− s]
)

.

1distortionless constraint
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The maximum value in f corresponds to the mean given by the signal of interest s, which is the
“most likely” event. Thus, the maximum-likelihood (ML) angle estimate is given by

φ̂s = arg max
φ

f (x; σs, φs).

This makes the ML estimator of φs equal to

φ̂s = arg max
φ

|vH(φ)R−1
i+nx|2

vH(φ)R−1
i+nv(φ)

.

9.5.2 Cramér-Rao Lower Bound on Angle Accuracy

The Cramér-Rao lower bound (CRLB) places a lower bound on the performance of an unbiased
estimator (where lower is better). We provide a sketch of the derivation of the CRLB for angle
accuracy. The CRLB provides the minimum variance of an unbiased estimator. If an estimator can
achieve the CRLB, then it is the maximum-likelihood estimator.

We first redefine the beamformer for a ULA from the spatial matched filter that has its phase center
moved from the first element to the center of the array

vΣ(φ) = e−i2π M−1
2

d
λ sin φv(φ)

=
1√
M

[
e−i2π M−1

2
d
λ sin φ e−i2π M−3

2
d
λ sin φ · · · ei2π M−1

2
d
λ sin φ

]T

which we will refer to as the sum beamformer. This choice of a phase center provides the tightest
bound on accuracy. We can define a second beamformer based on the derivative of vΣ(φ) given
by

v∆(φ) = iδ� vΣ(φ)

where

δ =

[
−M− 1

2
− M− 3

2
· · · M− 1

2

]T

which can be thought of as a difference taper. The steering vector v∆(φ) provides a difference
pattern beamformer steered to the angle φ, and we correspondingly call this the difference beam-
former. In relation to the sum beamformer, we get

vT
∆(φ)vΣ(φ) = 0

or, in other words, they are orthogonal. Since the two beamformers are orthogonal to each other,
then—in terms of the signal s—the two beamformers can make two independent measurements
of the signal. These independent measurements allow for the discrimination of angle.

Using these two steering vectors v∆(φ) and vΣ(φ), we can form an adaptive sum beamformer

cΣ(φ) = R−1
i+nvΣ(φ)

and an adaptive difference beamformer

c∆(φ) = R−1
i+nv∆(φ)
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which both have not been normalized to satisfy any particular criteria.

Proceeding, we can compute the power of the interference-plus-noise output of these two beam-
formers

PΣ = cH
Σ Ri+ncΣ P∆ = cH

∆ Ri+nc∆.

Similarly, we can measure the normalized cross-correlation ρ2
Σ∆ of the interference-plus-noise out-

puts of these adaptive sum and difference beamformers Ri+n

ρ2
Σ∆ =

|cH
Σ Ri+nc∆|

PΣP∆
.

Then, using the power of the interference-plus-noise output of the two beamformers and the nor-
malized cross-correlation, we get the CRB on angle estimation for a ULA:

σ2
φ ≥

1
2π2 · SNR0 · P∆(1− ρ2

Σ∆) cos2 φ

where SNR0 is the SNR for a spatial matched filter in the absence of interference, i.e., only noise,
which is given by

SNR0 = M
σ2

s
σ2

w

where M is the number of elements in the array and the σ2
s,w are the second order moments of the

signal and noise, respectively.

First, notice that as the signal power increases, SNR0 increases; as a result, angle accuracy
improves. Likewise, the term cos2 φ represents the increase in beamwidth of the ULA as we
steer away from the broadside (φ = 0◦). P∆ provides a measure of the received power aligned
with the adaptive difference beamformer. Ideally, ρΣ∆ is zero, since cΣ and c∆ beamformers are
derived from vΣ and v∆, respectively, which are orthogonal to each other. In the case of the two
adaptive beamformers, the adaptiation will remove this orthogonality, but the beamformers should
be different enough that ρΣ∆ � 1. Otherwise, angle accuracy will suffer.

Okay, so the takeaway of this section is that SNR improves angle estimation, and angle estimation
accuracy improves along the side with the most antennas.

9.5.3 Beamsplitting Algorithms

Let’s consider the scenario with a single beamformer steered to an angle φ0 with our signal of
interest at angle φs. The beamformer passes all signals within its beamwidth with only slight
attenuation of signals that are not directly at the center of the beam steered to φ0. As a side
effect, this single beamformer cannot discriminate between signals received within its beamwidth.
However, we want a resolution finer than the beamwidth in our angle estimate for a signal of
interest. Algorithms that acheive such resolution are often called beamsplitting algorithms.

To find an angle estimate, we obtain different measurements of the signal of interest. These mea-
surements allow an angle estimation algorithm to discriminate between returns that arrive at the
array from different angles. To this end, we use a set of beamformers steered in the general direc-
tion of the signal of interest but with different beampatterns, i.e., two beams with offset mainlobes

φ1 = φ0 − ε φ2 = φ0 + ε
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where ε is a fraction of the beamwidth (e.g., half a beamwidth). Let the weight vectors for these
two beamformers be c1 and c2, respectively. These two beamformers can be either nonadaptive
or adaptive. Ideally, a pair of adaptive beamformers is used for applications in which interference
is encountered. Since the two beamformers are slightly offset from angle φ0, they can be thought
of as “left” and “right” beamformers. Using the beamformer weight vectors, we form the ratio

γx =
cH

1 x
cH

2 x
(20)

where x is the snapshot under consideration that contains the signal of interest s =
√

Mσsv(φs).
Similarly, we can hypothesize this ratio for any angle φ to form a discrimination function

γ(φ) =
cH

1 v(φ)
cH

2 v(φ)
. (21)

Comparing the value of the measured ratio in equation 20 for the snapshot x to the angular dis-
crimination function in equation 21, we obtain an estimate of the angle of interest φs. For this to
work, γ(φ) must be bijective.
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A Linear Algebra

Definition A.1. A Hermitian matrix is a square matrix equal to its conjugate transpose.

Definition A.2. An n× n Hermitian M is said to be positive definite if the scalar z∗Mz is real and
positive for all non-zero column vectors z on n complex numbers, i.e., z∗Mz > 0. (z∗ denotes the
conjugate transpose).

Positive semi-definite implies z∗Mz ≥ 0. Guess the definitions for negative definite and semi-
definite.

Definition A.3. The eigenvalues and eigenvectors corresponding to an n× n matrix M are column
vectors q of length n that satisfy

Mq = λq.

The eigenvectors are the set of q that satisfy the following and the eigenvalues are the corre-
sponding λ scalar values. Note that the direction of an eigenvector doesn’t change under the
linear transformation M.

Property A.1 (Eigenvalues and Eigenvectors).

1. Every square matrix over an algebraically closed field has eigenvectors (e.g., C but not R).

2. Unique eigenvalues correspond to linearly independent eigenvectors.

3. Unique eigenvalues of a Hermitian matrix correspond to orthogonal eigenvectors.

Definition A.4. For a Hermitian matrix M and nonzero vector x, the Rayleigh quotient is defined
as

R(M, x) :=
x∗Mx

x∗x
where x∗ denotes the conjugate transpose.

Theorem A.1 (Spectral theorem). We can decompose any symmetric matrix A ∈ Sn with the
symmetric eigenvalue decomposition

A = UΛUT, Λ = diag(λ1, . . . , λn).

where the matrix of U contains the eigenvectors of A.

Property A.2. The trace of a square matrix is the sum of all eigenvalues (if they exist).

Property A.3. The determinant of a square matrix is equal to the product of all eigenvalues (if
they exist).

Definition A.5. A matrix is normal if it commutes with its conjugate transpose, i.e., AH A = AAH.

Definition A.6 (Singular value decomposition). Singular value decomposition (SVD) is a factor-
ization of a real of complex matrix. It is the generalization of the eigendecomposition of a positive
semi-definite normal matrix to any m× n matrix.

Let M be a m× n matrix whose entries come from K ∈ {R, C}. Then there exists a factorization,
called a singular value decomposition of M, of the form

M = UΣV∗

where
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• U is a m×m unitary matrix (inverse equal to conjugate transpose).

• Σ is a diagonal m× n matrix with non-negative real numbers on the diagonal.

• V∗ is a n× n unitary matrix over K. V∗ is the conjugate transpose of the n× n unitary matrix
V.

The diagonal entries Σ, denoted σi, are known as the singular values of M. The columns of U are
the left singular vectors, and the columns of V are the right singular vectors. V diagonalizes A∗A
and U diagonalizes AA∗, the columns of both are the eigenvectors of A∗A and AA∗ respectively.

Diagonalizing a matrix in this way is very convenient and useful in many applications, e.g., we can
use the first k singular vectors to approximate a rank r matrix where k < r. That is good, believe
you me.
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B Frequentist and Bayesian Statistics

Frequentist inference is a type of statistical inference that draws conclusions from observed data,
and makes assumptions based on the frequency or proportion of the data. This contrasts to
Bayesian inference, where we incorporate our beliefs into our prediction then update the parame-
ters of our hypothesis conditioned on new observations.

Definition B.1. In Bayesian statistics, the prior probability is our belief of what the parameters
of a distribution are before observation, i.e., the prior probability of the parameters θ for some
distribution of observations is denoted by P[θ]. The posterior probability is the probability of the
observations X conditioned on our prior beliefs, using the previous example, it would be

P[θ|X] =
P[X|θ]P[θ]

P[X]
.

Definition B.2. The likelihood function is a function of the parameters of a statistical model given
data. The likelihood of a set of parameter values θ given outcomes X is equal to the probability of
those observed outcomes given those parameter values, i.e.,

L(θ|X) = P[X|θ].

Remark. Note that the posterior is proportional to the likelihood times the prior. The denominator is
just a (but the right) normalizing term such that the posterior is still a probability measure (posterior
∈ [0, 1]).

Definition B.3. The maximum likelihood estimation (MLE) is a method of estimating the parame-
ters of a statistical model, given observations, by finding the parameter values that maximize the
likelihood of making the observations given the parameters. In MLE, we seek a point value for θ
which maximizes the likelihood function. Let’s denote this θ̂. Note that since θ̂ is a point estimate,
it is not a random variable. Thus, we cannot inject our prior beliefs about the likely values for θ in
the estimation calculation. Thus MLE is associated with frequentist statistics (although it is heavily
used in Bayesian as well).

It turns out that MLE is really just counting the number of positive (or whatever) occurances in a
data set and normalizing by the dataset and assigning that as the probability of that positive (or
whatever) occurance happening again. To see this, notice that clearly this maximizes the likelihood
of the parameters given the observations. Thus this is just a fancy name for a very simple concept.

As an equation the MLE can be described as

θ̂ML(X) = arg max
θ

f (X|θ)

where f is the sampling distribution (density) of X and f (X|θ) is the probability of x when the
underlying population parameter is θ. Thus θ 7→ f (X|θ) is the likelihood function, as described in
Definition B.2.

Definition B.4. The maximum a posteriori estimation (MAP) is an estimate of an unknown quan-
tity, that equals the mode of the posterior distribution. It is similar to the MLE but incorporates a
prior distribution over the quantity one wants to estimate.
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Assume that a prior density g over θ exists. Then we can treat θ as a random variable (i.e. we
are in the realm of Bayesian statistics). Then we can calculate the posterior distribution of θ using
Bayes’ theorem

θ 7→ f (θ|X) =
f (X|θ)g(θ)∫

ϑ∈Θ f (x|ϑ)g(ϑ) dϑ

where Θ is the domain of g.

The method of MAP estimation then estimates θ as the mode of the posterior distribution of this
random variable

θ̂MAP(X) = arg max
θ

f (θ|X) = arg max
θ

f (X|θ)g(θ)∫
ϑ f (X|ϑ)g(ϑ) dϑ

= arg max
θ

f (X|θ)g(θ).

(the denominator is a constant which is why we can remove it from the optimization).

Remark. MLE often overfits data (variance of parameter estimates is high), to combat this we can
regularize the MLE (introduce bias to the estimate) through MAP (assume the parameters are a
random variable, of which we have prior beliefs). Note that MAP is a generalization of MLE and
the two are equal when the prior g is uniform.

Definition B.5. The expectation-maximization algorithm (EM algorithm) is an iterative statistical
estimation procedure to address the incomplete or missing data or parameter estimation problem.
Given some observation data X, latent (unobserved) variables λ, and a model parameterized by
θ, the EM algorithm solves the following optimization problem

arg max
θ

E[log L(θ|X, λ)] for (X, λ)|θ̂(n−1)

where L(θ|X, λ) = P(X, λ|θ). The log operator is applied to make this an easier, and more
numerically stable, maximization (log makes many distributions concave, i.e., maximization will
result in the global maximum).

Definition B.6 (Principal component analysis). Principal component analysis (PCA) is often used
to reduce the dimensionality of data while preserving most of the variation in the dataset (e.g.,
save space, make less computationally expensive algorithms). This is sometimes (mostly in signal
processing) called the Karhunen-Loéve transform.

To compute PCA:

1. Organize data into an m× n matrix, where m is the number of measurement types and n is
the number of samples.

2. Subtract the mean from each measurement type.

3. Calculate the SVD or the eigenvectors of the covariance.

Note that the singular values produced from SVD are the square root of the eigenvalues of the
covariance matrix and the right singular vector matrix (denoted V in A.6) are the principal compo-
nents.

We can reduce the dimension of X by only using the first k principal components of X (eigenvectors
of Cov(X)) corresponding to the first k largest eigenvalues.

51 of 52 Array Processing



C MORE MATH

C More Math

Definition C.1. A topology on a set X is a family τ of subsets of S which contain ∅ and X and is
closed under finite intersection and arbitrary union. The elements of τ are often called the open
sets. A set X on which a topology is chosen, i.e., (X, τ) is called a topological space.

In other words, a topology just a way to define open sets on a space (with some additional struc-
ture).

Definition C.2. A random field is a generalization of a stochastic process, i.e., a stochastic pro-
cess which is indexed over a parameter space of dimension greater than (or equal to) one.

Theorem C.1 (Wiener-Khinchin Theorem). For a wide-sense stationary stochastic process, the
Fourier transform of the autocorrelation is equal to the power spectrum.

Theorem C.2 (Taylor’s Theorem). Let k ∈ Z≥1 and let the map f : R→ R be k times differentiable
at the point a ∈ R. Then there exists a function hk : R→ R such that

f (x) = f (a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (k)(a)

k!
(x− a)k + hk(x)(x− a)k

and limx→a hk(x) = 0. (This is called the Peano form of the remainder).
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